

The 8051 Microcontroller and Embedded
Systems

Using Assembly and C
Second Edition

Muhammad Ali Mazidi
Janice Gillispie Mazidi

Rolin D. McKinlay

CONTENTS

 Introduction to Computing
 The 8051 Microcontrollers
 8051 Assembly Language Programming
 Branch Instructions
 I/O Port Programming
 8051 Addressing Modes
 Arithmetic & Logic Instructions And Programs
 8051 Programming in C
 8051 Hardware Connection and Hex File
 8051 Timer/Counter Programming in Assembly and C
 8051 Serial Port Programming in Assembly and C
 Interrupts Programming in Assembly and C
 8051 Interfacing to External Memory
 8051 Real World Interfacing I: LCD,ADC AND
SENSORS

 LCD and Keyboard Interfacing
 8051 Interfacing with 8255

http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Introduction%20to%20Computing.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/8051%20Microcontrollers.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Assembly%20Language%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Branch%20Instructions.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/IO%20Port%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Addressing%20Modes.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Arithmetic%20Logic%20Instructions.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Programming%20in%20C.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Hardware%20Connection%20and%20Hex%20File.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Timer%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Serial%20Port%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Interrupts%20Programming.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Interfacing%20to%20External%20Memory.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/LCD%20and%20Keyboard.pdf
http://hanel.csie.ncku.edu.tw/courses/2006_spring/ucom/slides/Interfacing%20with%208255

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

INTRODUCTION TO
COMPUTING

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

OUTLINES
Numbering and coding systems
Digital primer
Inside the computer

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

NUMBERING
AND CODING

SYSTEMS

Decimal and
Binary Number

Systems

Human beings use base 10 (decimal)
arithmetic

There are 10 distinct symbols, 0, 1, 2, …,
9

Computers use base 2 (binary) system
There are only 0 and 1
These two binary digits are commonly
referred to as bits

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

NUMBERING
AND CODING

SYSTEMS

Converting
from Decimal

to Binary

Divide the decimal number by 2
repeatedly
Keep track of the remainders
Continue this process until the quotient
becomes zero
Write the remainders in reverse order
to obtain the binary number

Ex. Convert 2510 to binary
Quotient Remainder

25/2 = 12 1 LSB (least significant bit)
12/2 = 6 0
6/2 = 3 0
3/2 = 1 1
1/2 = 0 1 MSB (most significant bit)
Therefore 2510 = 110012

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

NUMBERING
AND CODING

SYSTEMS

Converting
from Binary to

Decimal

Know the weight of each bit in a binary
number
Add them together to get its decimal
equivalent

Use the concept of weight to convert a
decimal number to a binary directly

Ex. Convert 110012 to decimal
Weight: 24 23 22 21 20

Digits: 1 1 0 0 1
Sum: 16 + 8 + 0 + 0 + 1 = 2510

Ex. Convert 3910 to binary
32 + 0 + 0 + 4 + 2 + 1 = 39

Therefore, 3910 = 1001112

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

NUMBERING
AND CODING

SYSTEMS

Hexadecimal
System

Base 16, the
hexadecimal system,
is used as a
convenient
representation of
binary numbers

ex.
It is much easier to
represent a string of 0s
and 1s such as
100010010110 as its
hexadecimal equivalent of
896H

F111115
E111014
D110113
C110012
B101111
A101010
910019
810008
701117
601106
501015
401004
300113
200102
100011
000000

HexBinaryDecimal

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

NUMBERING
AND CODING

SYSTEMS

Converting
between Binary

and Hex

To represent a binary number as its
equivalent hexadecimal number

Start from the right and group 4 bits at a
time, replacing each 4-bit binary number
with its hex equivalent

To convert from hex to binary
Each hex digit is replaced with its 4-bit
binary equivalent

Ex. Convert hex 29B to binary
2 9 B

= 0010 1001 1011

Ex. Represent binary 100111110101 in hex
1001 1111 0101

= 9 F 5

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

NUMBERING
AND CODING

SYSTEMS

Converting
from Decimal

to Hex

Convert to binary first and then
convert to hex
Convert directly from decimal to hex
by repeated division, keeping track of
the remainders

Ex. Convert 4510 to hex
32 16 8 4 2 1
1 0 1 1 0 1 32 + 8 + 4 + 1 = 45

4510 = 0010 11012 = 2D16

Ex. Convert 62910 to hex
512 256 128 64 32 16 8 4 2 1
1 0 0 1 1 1 0 1 0 1

62910 = 512+64+32+16+4+1 = 0010 0111 01012 = 27516

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

NUMBERING
AND CODING

SYSTEMS

Converting
from Hex to

Decimal

Convert from hex to binary and then to
decimal
Convert directly from hex to decimal
by summing the weight of all digits

Ex. 6B216 = 0110 1011 00102
1024 512 256 128 64 32 16 8 4 2 1

1 1 0 1 0 1 1 0 0 1 0
1024 + 512 + 128 + 32 + 16 + 2 = 171410

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

NUMBERING
AND CODING

SYSTEMS

Addition of Hex
Numbers

Adding the digits together from the
least significant digits

If the result is less than 16, write that digit
as the sum for that position
If it is greater than 16, subtract 16 from it
to get the digit and carry 1 to the next
digit

Ex. Perform hex addition: 23D9 + 94BE

23D9 LSD: 9 + 14 = 23 23 – 16 = 7 w/ carry
+ 94BE 1 + 13 + 11 = 25 25 – 16 = 9 w/ carry

B897 1 + 3 + 4 = 8
MSD: 2 + 9 = B

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

NUMBERING
AND CODING

SYSTEMS

Subtraction of
Hex Numbers

If the second digit is greater than the
first, borrow 16 from the preceding
digit

Ex. Perform hex subtraction: 59F – 2B8

59F LSD: 15 – 8 = 7
– 2B8 9 + 16 – 11 = 14 = E16

2E7 5 – 1 – 2 = 2

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

NUMBERING
AND CODING

SYSTEMS

ASCII Code

The ASCII (pronounced “ask-E”) code
assigns binary patterns for

Numbers 0 to 9
All the letters of English alphabet,
uppercase and lowercase
Many control codes and punctuation
marks

The ASCII system uses 7 bits to
represent each code

z7AZ5A
y79Y59

….........
d64D44
c63C43
b62B42
a61A41

SymbolHexSymbolHex
Selected ASCII codes

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

DIGITAL
PRIMER

Binary Logic

Two voltage levels can be represented
as the two digits 0 and 1
Signals in digital electronics have two
distinct voltage levels with built-in
tolerances for variations in the voltage
A valid digital signal should be within
either of the two shaded areas

0
1
2
3
4
5

Logic 0

Logic 1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

DIGITAL
PRIMER

Logic Gates

AND gate

OR gate

Computer Science Illuminated, Dale and Lewis

Computer Science Illuminated, Dale and Lewis

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

DIGITAL
PRIMER

Logic Gates
(cont’)

Tri-state buffer
Inverter

XOR gate

Computer Science Illuminated, Dale and Lewis

Computer Science Illuminated, Dale and Lewis

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

DIGITAL
PRIMER

Logic Gates
(cont’)

NAND gate

NOR gate

Computer Science Illuminated, Dale and Lewis

Computer Science Illuminated, Dale and Lewis

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

DIGITAL
PRIMER

Logic Design
Using Gates

Half adder

Full adder

Digital Design, Mano

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

DIGITAL
PRIMER

Logic Design
Using Gates

(cont’)

4-bit adder

Digital Design, Mano

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

DIGITAL
PRIMER

Logic Design
Using Gates

(cont’)

Decoders
Decoders are widely used for address
decoding in computer design

Address decoder for 9 (10012)

The output will be 1 if and
only if the input is 10012

Address decoder for 5 (01012)

The output will be 1 if and
only if the input is 01012

Address Decoders

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

DIGITAL
PRIMER

Logic Design
Using Gates

(cont’)

Flip-flops
Flip-flops are frequently used to store data

Digital Design, Mano

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

INSIDE THE
COMPUTER

Important
Terminology

The unit of data size
Bit : a binary digit that can have the value
0 or 1
Byte : 8 bits
Nibble : half of a bye, or 4 bits
Word : two bytes, or 16 bits

The terms used to describe amounts of
memory in IBM PCs and compatibles

Kilobyte (K): 210 bytes
Megabyte (M) : 220 bytes, over 1 million
Gigabyte (G) : 230 bytes, over 1 billion
Terabyte (T) : 240 bytes, over 1 trillion

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

INSIDE THE
COMPUTER

Internal
Organization of

Computers

CPU (Central Processing Unit)
Execute information stored in memory

I/O (Input/output) devices
Provide a means of communicating with
CPU

Memory
RAM (Random Access Memory) –
temporary storage of programs that
computer is running

The data is lost when computer is off
ROM (Read Only Memory) – contains
programs and information essential to
operation of the computer

The information cannot be changed by use,
and is not lost when power is off

– It is called nonvolatile memory

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

INSIDE THE
COMPUTER

Internal
Organization of

Computers
(cont’) CPU

Memory

(RAM, ROM)

Peripherals

(monitor,
printer, etc.)

Address bus

Data bus

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

INSIDE THE
COMPUTER

Internal
Organization of

Computers
(cont’)

The CPU is connected to memory and
I/O through strips of wire called a bus

Carries information from place to place
Address bus
Data bus
Control bus

CPU

Read/
Write

RAM

Address bus

Data bus

ROM Printer Disk Monitor Keyboard

Control bus

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

INSIDE THE
COMPUTER

Internal
Organization of

Computers
(cont’)

Address bus
For a device (memory or I/O) to be
recognized by the CPU, it must be
assigned an address

The address assigned to a given device must
be unique
The CPU puts the address on the address bus,
and the decoding circuitry finds the device

Data bus
The CPU either gets data from the device
or sends data to it

Control bus
Provides read or write signals to the
device to indicate if the CPU is asking for
information or sending it information

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

INSIDE THE
COMPUTER

More about
Data Bus

The more data buses available, the
better the CPU

Think of data buses as highway lanes

More data buses mean a more
expensive CPU and computer

The average size of data buses in CPUs
varies between 8 and 64

Data buses are bidirectional
To receive or send data

The processing power of a computer is
related to the size of its buses

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

INSIDE THE
COMPUTER

More about
Address Bus

The more address buses available, the
larger the number of devices that can
be addressed
The number of locations with which a
CPU can communicate is always equal
to 2x, where x is the address lines,
regardless of the size of the data bus

ex. a CPU with 24 address lines and 16
data lines can provide a total of 224 or 16M
bytes of addressable memory
Each location can have a maximum of 1
byte of data, since all general-purpose
CPUs are byte addressable

The address bus is unidirectional

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

INSIDE THE
COMPUTER

CPU’s Relation
to RAM and

ROM

For the CPU to process information,
the data must be stored in RAM or
ROM, which are referred to as primary
memory
ROM provides information that is fixed
and permanent

Tables or initialization program
RAM stores information that is not
permanent and can change with time

Various versions of OS and application
packages
CPU gets information to be processed

first form RAM (or ROM)
if it is not there, then seeks it from a mass
storage device, called secondary memory, and
transfers the information to RAM

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

INSIDE THE
COMPUTER

Inside CPUs

Registers
The CPU uses registers to store
information temporarily

Values to be processed
Address of value to be fetched from memory

In general, the more and bigger the
registers, the better the CPU

Registers can be 8-, 16-, 32-, or 64-bit
The disadvantage of more and bigger registers
is the increased cost of such a CPU

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

INSIDE THE
COMPUTER

Inside CPUs
(cont’)

Flags ALU

Program Counter

Instruction Register

Instruction decoder,
timing, and control

Register A

Register B

Register C

Register D

A
ddress B

us
C

ontrol B
us

D
ata B

us

Internal
buses

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

INSIDE THE
COMPUTER

Inside CPUs
(cont’)

ALU (arithmetic/logic unit)
Performs arithmetic functions such as add,
subtract, multiply, and divide, and logic
functions such as AND, OR, and NOT

Program counter
Points to the address of the next
instruction to be executed

As each instruction is executed, the program
counter is incremented to point to the address
of the next instruction to be executed

Instruction decoder
Interprets the instruction fetched into the
CPU

A CPU capable of understanding more
instructions requires more transistors to design

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

INSIDE THE
COMPUTER

Internal
Working of
Computers

Ex. A CPU has registers A, B, C, and D and it has an 8-bit
data bus and a 16-bit address bus. The CPU can access
memory from addresses 0000 to FFFFH
Assume that the code for the CPU to move a value to
register A is B0H and the code for adding a value to
register A is 04H
The action to be performed by the CPU is to put 21H into
register A, and then add to register A values 42H and 12H

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

INSIDE THE
COMPUTER

Internal
Working of
Computers

(cont’)

Ex. (cont’)
Action Code Data
Move value 21H into reg. A B0H 21H
Add value 42H to reg. A 04H 42H
Add value 12H to reg. A 04H 12H

Mem. addr. Contents of memory address
1400 (B0) code for moving a value to register A
1401 (21) value to be moved
1402 (04) code for adding a value to register A
1403 (42) value to be added
1404 (04) code for adding a value to register A
1405 (12) value to be added
1406 (F4) code for halt

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

INSIDE THE
COMPUTER

Internal
Working of
Computers

(cont’)

Ex. (cont’)
The actions performed by CPU are as follows:
1. The program counter is set to the value 1400H,

indicating the address of the first instruction code to
be executed

2.

The CPU puts 1400H on address bus and sends it
out

The memory circuitry finds the location

The CPU activates the READ signal, indicating to
memory that it wants the byte at location 1400H

This causes the contents of memory location
1400H, which is B0, to be put on the data bus and
brought into the CPU

...

以動畫表示

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

INSIDE THE
COMPUTER

Internal
Working of
Computers

(cont’)

Ex. (cont’)
3.

The CPU decodes the instruction B0
The CPU commands its controller circuitry to bring
into register A of the CPU the byte in the next
memory location

The value 21H goes into register A

The program counter points to the address of the
next instruction to be executed, which is 1402H

Address 1402 is sent out on the address bus to
fetch the next instruction

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

INSIDE THE
COMPUTER

Internal
Working of
Computers

(cont’)

Ex. (cont’)
4.

From memory location 1402H it fetches code 04H
After decoding, the CPU knows that it must add to
the contents of register A the byte sitting at the
next address (1403)
After the CPU brings the value (42H), it provides
the contents of register A along with this value to
the ALU to perform the addition

It then takes the result of the addition from the
ALU’s output and puts it in register A
The program counter becomes 1404, the address
of the next instruction

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

INSIDE THE
COMPUTER

Internal
Working of
Computers

(cont’)

Ex. (cont’)
5.

Address 1404H is put on the address bus and the
code is fetched into the CPU, decoded, and
executed

This code is again adding a value to register A
The program counter is updated to 1406H

6.

The contents of address 1406 are fetched in and
executed
This HALT instruction tells the CPU to stop
incrementing the program counter and asking for
the next instruction

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

8051 MICROCONTROLLERS

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

OUTLINES
Microcontrollers and embedded
processors
Overview of the 8051 family

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

Microcontroller
vs. General-

Purpose
Microprocessor

General-purpose microprocessors
contains

No RAM
No ROM
No I/O ports

Microcontroller has
CPU (microprocessor)
RAM
ROM
I/O ports
Timer
ADC and other peripherals

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

Microcontroller
vs. General-

Purpose
Microprocessor

(cont’)

Serial
COM
Port

TimerI/O

ROMRAMCPU

Microcontroller

CPU

RAM

Address bus

Data bus

ROM I/O
Port

Serial
COM
Port

Timer

General-
purpose
Micro-
Processor

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

Microcontroller
vs. General-

Purpose
Microprocessor

(cont’)

General-purpose microprocessors
Must add RAM, ROM, I/O ports, and
timers externally to make them functional
Make the system bulkier and much more
expensive
Have the advantage of versatility on the
amount of RAM, ROM, and I/O ports

Microcontroller
The fixed amount of on-chip ROM, RAM,
and number of I/O ports makes them ideal
for many applications in which cost and
space are critical
In many applications, the space it takes,
the power it consumes, and the price per
unit are much more critical considerations
than the computing power

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

Microcontrollers
for Embedded

Systems

An embedded product uses a
microprocessor (or microcontroller) to
do one task and one task only

There is only one application software that
is typically burned into ROM

A PC, in contrast with the embedded
system, can be used for any number of
applications

It has RAM memory and an operating
system that loads a variety of applications
into RAM and lets the CPU run them
A PC contains or is connected to various
embedded products

Each one peripheral has a microcontroller inside
it that performs only one task

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

Microcontrollers
for Embedded

Systems
(cont’)

Home
Appliances, intercom, telephones, security systems,
garage door openers, answering machines, fax
machines, home computers, TVs, cable TV tuner,
VCR, camcorder, remote controls, video games,
cellular phones, musical instruments, sewing
machines, lighting control, paging, camera, pinball
machines, toys, exercise equipment

Office
Telephones, computers, security systems, fax
machines, microwave, copier, laser printer, color
printer, paging

Auto
Trip computer, engine control, air bag, ABS,
instrumentation, security system, transmission
control, entertainment, climate control, cellular
phone, keyless entry

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

x86 PC
Embedded
Applications

Many manufactures of general-purpose
microprocessors have targeted their
microprocessor for the high end of the
embedded market

There are times that a microcontroller is
inadequate for the task

When a company targets a general-
purpose microprocessor for the
embedded market, it optimizes the
processor used for embedded systems
Very often the terms embedded
processor and microcontroller are used
interchangeably

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

x86 PC
Embedded
Applications

(cont’)

One of the most critical needs of an
embedded system is to decrease
power consumption and space
In high-performance embedded
processors, the trend is to integrate
more functions on the CPU chip and let
designer decide which features he/she
wants to use
In many cases using x86 PCs for the
high-end embedded applications

Saves money and shortens development
time

A vast library of software already written
Windows is a widely used and well understood
platform

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

Choosing a
Microcontroller

8-bit microcontrollers
Motorola’s 6811
Intel’s 8051
Zilog’s Z8
Microchip’s PIC

There are also 16-bit and 32-bit
microcontrollers made by various chip
makers

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

Criteria for
Choosing a

Microcontroller

Meeting the computing needs of the
task at hand efficiently and cost
effectively

Speed
Packaging
Power consumption
The amount of RAM and ROM on chip
The number of I/O pins and the timer on
chip
How easy to upgrade to higher-
performance or lower power-consumption
versions
Cost per unit

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

MICRO-
CONTROLLERS

AND
EMBEDDED

PROCESSORS

Criteria for
Choosing a

Microcontroller
(cont’)

Availability of software development
tools, such as compilers, assemblers,
and debuggers
Wide availability and reliable sources
of the microcontroller

The 8051 family has the largest number of
diversified (multiple source) suppliers

Intel (original)
Atmel
Philips/Signetics
AMD
Infineon (formerly Siemens)
Matra
Dallas Semiconductor/Maxim

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

OVERVIEW OF
8051 FAMILY

8051
Microcontroller

Intel introduced 8051, referred as MCS-
51, in 1981

The 8051 is an 8-bit processor
The CPU can work on only 8 bits of data at a
time

The 8051 had
128 bytes of RAM
4K bytes of on-chip ROM
Two timers
One serial port
Four I/O ports, each 8 bits wide
6 interrupt sources

The 8051 became widely popular after
allowing other manufactures to make
and market any flavor of the 8051, but
remaining code-compatible

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

OVERVIEW OF
8051 FAMILY

8051
Microcontroller

(cont’)

Interrupt
Control

Bus
Control

CPU

OSC I/O
Ports

Serial
Port

Etc.
Timer 0
Timer 1

On-chip
RAM

On-chip
ROM

for code

P0 P1 P2 P3

Address/Data

TXD RXD

C
ounter Inputs

External
Interrupts

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

OVERVIEW OF
8051 FAMILY

8051 Family

The 8051 is a subset of the 8052
The 8031 is a ROM-less 8051

Add external ROM to it
You lose two ports, and leave only 2 ports
for I/O operations

686Interrupt sources

111Serial port

323232I/O pins

232Timers

128256128RAM (bytes)

0K8K4KROM (on-chip program
space in bytes)

803180528051Feature

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

OVERVIEW OF
8051 FAMILY

Various 8051
Microcontrollers

8751 microcontroller
UV-EPROM

PROM burner
UV-EPROM eraser takes 20 min to erase

AT89C51 from Atmel Corporation
Flash (erase before write)

ROM burner that supports flash
A separate eraser is not needed

DS89C4x0 from Dallas Semiconductor,
now part of Maxim Corp.

Flash
Comes with on-chip loader, loading program to
on-chip flash via PC COM port

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

OVERVIEW OF
8051 FAMILY

Various 8051
Microcontrollers

(cont’)

DS5000 from Dallas Semiconductor
NV-RAM (changed one byte at a time),
RTC (real-time clock)

Also comes with on-chip loader

OTP (one-time-programmable) version
of 8051
8051 family from Philips

ADC, DAC, extended I/O, and both OTP
and flash

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

8051 ASSEMBLY
LANGUAGE

PROGRAMMING

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

INSIDE THE
8051

Registers

Register are used to store information
temporarily, while the information
could be

a byte of data to be processed, or
an address pointing to the data to be
fetched

The vast majority of 8051 register are
8-bit registers

There is only one data type, 8 bits

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

INSIDE THE
8051

Registers
(cont’)

The 8 bits of a register are shown from
MSB D7 to the LSB D0

With an 8-bit data type, any data larger
than 8 bits must be broken into 8-bit
chunks before it is processed

D0D1D2D3D4D5D6D7

8 bit Registers

most
significant bit

least
significant bit

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

INSIDE THE
8051

Registers
(cont’)

The most widely used registers
A (Accumulator)

For all arithmetic and logic instructions

B, R0, R1, R2, R3, R4, R5, R6, R7
DPTR (data pointer), and PC (program
counter)

R6
R5
R4
R3
R2
R1
R0
B
A

R7

DPTR

PC PC (Program counter)

DPH DPL

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

INSIDE THE
8051

MOV
Instruction

MOV destination, source ;copy source to dest.
The instruction tells the CPU to move (in reality,
COPY) the source operand to the destination
operand

MOV A,#55H ;load value 55H into reg. A
MOV R0,A ;copy contents of A into R0

;(now A=R0=55H)
MOV R1,A ;copy contents of A into R1

;(now A=R0=R1=55H)
MOV R2,A ;copy contents of A into R2

;(now A=R0=R1=R2=55H)
MOV R3,#95H ;load value 95H into R3

;(now R3=95H)
MOV A,R3 ;copy contents of R3 into A

;now A=R3=95H

“#” signifies that it is a value

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

INSIDE THE
8051

MOV
Instruction

(cont’)

Notes on programming
Value (proceeded with #) can be loaded
directly to registers A, B, or R0 – R7

MOV A, #23H
MOV R5, #0F9H

If values 0 to F moved into an 8-bit
register, the rest of the bits are assumed
all zeros

“MOV A, #5”, the result will be A=05; i.e., A
= 00000101 in binary

Moving a value that is too large into a
register will cause an error

MOV A, #7F2H ; ILLEGAL: 7F2H>8 bits (FFH)

If it’s not preceded with #,
it means to load from a
memory locationAdd a 0 to indicate that

F is a hex number and
not a letter

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

INSIDE THE
8051

ADD
Instruction

ADD A, source ;ADD the source operand
;to the accumulator

The ADD instruction tells the CPU to add the source
byte to register A and put the result in register A
Source operand can be either a register or
immediate data, but the destination must always
be register A

“ADD R4, A” and “ADD R2, #12H” are invalid
since A must be the destination of any arithmetic
operation

MOV A, #25H ;load 25H into A
MOV R2, #34H ;load 34H into R2
ADD A, R2 ;add R2 to Accumulator

;(A = A + R2)

MOV A, #25H ;load one operand
;into A (A=25H)

ADD A, #34H ;add the second
;operand 34H to A

There are always
many ways to write
the same program,
depending on the
registers used

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

Structure of
Assembly
Language

In the early days of the computer,
programmers coded in machine language,
consisting of 0s and 1s

Tedious, slow and prone to error

Assembly languages, which provided
mnemonics for the machine code instructions,
plus other features, were developed

An Assembly language program consist of a series
of lines of Assembly language instructions

Assembly language is referred to as a low-
level language

It deals directly with the internal structure of the
CPU

8051
ASSEMBLY

PROGRAMMING

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

Structure of
Assembly
Language

8051
ASSEMBLY

PROGRAMMING

Assembly language instruction includes
a mnemonic (abbreviation easy to remember)

the commands to the CPU, telling it what those
to do with those items

optionally followed by one or two operands
the data items being manipulated

A given Assembly language program is
a series of statements, or lines

Assembly language instructions
Tell the CPU what to do

Directives (or pseudo-instructions)
Give directions to the assembler

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

Structure of
Assembly
Language

ORG 0H ;start(origin) at location
0
MOV R5, #25H ;load 25H into R5
MOV R7, #34H ;load 34H into R7
MOV A, #0 ;load 0 into A
ADD A, R5 ;add contents of R5 to A

;now A = A + R5
ADD A, R7 ;add contents of R7 to A

;now A = A + R7
ADD A, #12H ;add to A value 12H

;now A = A + 12H
HERE: SJMP HERE ;stay in this loop

END ;end of asm source file

8051
ASSEMBLY

PROGRAMMING

An Assembly language instruction
consists of four fields:
[label:] Mnemonic [operands] [;comment]

Mnemonics
produce
opcodes

The label field allows
the program to refer to a
line of code by name

Comments may be at the end of a
line or on a line by themselves
The assembler ignores comments

Directives do not
generate any machine
code and are used
only by the assembler

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

The step of Assembly language
program are outlines as follows:

1) First we use an editor to type a program,
many excellent editors or word
processors are available that can be used
to create and/or edit the program

Notice that the editor must be able to produce
an ASCII file
For many assemblers, the file names follow
the usual DOS conventions, but the source file
has the extension “asm“ or “src”, depending
on which assembly you are using

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

(cont’)

2) The “asm” source file containing the
program code created in step 1 is fed to
an 8051 assembler

The assembler converts the instructions into
machine code
The assembler will produce an object file and
a list file
The extension for the object file is “obj” while
the extension for the list file is “lst”

3) Assembler require a third step called
linking

The linker program takes one or more object
code files and produce an absolute object file
with the extension “abs”
This abs file is used by 8051 trainers that
have a monitor program

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

(cont’)

4) Next the “abs” file is fed into a program
called “OH” (object to hex converter)
which creates a file with extension “hex”
that is ready to burn into ROM

This program comes with all 8051 assemblers
Recent Windows-based assemblers combine
step 2 through 4 into one step

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

Steps to Create
a Program

EDITOR
PROGRAM

ASSEMBLER
PROGRAM

LINKER
PROGRAM

OH
PROGRAM

myfile.asm

myfile.obj

myfile.abs

myfile.lst
Other obj files

myfile.hex

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

ASSEMBLING
AND RUNNING

AN 8051
PROGRAM

lst File

The lst (list) file, which is optional, is
very useful to the programmer

It lists all the opcodes and addresses as
well as errors that the assembler detected
The programmer uses the lst file to find
the syntax errors or debug

1 0000 ORG 0H ;start (origin) at 0
2 0000 7D25 MOV R5,#25H ;load 25H into R5
3 0002 7F34 MOV R7,#34H ;load 34H into R7
4 0004 7400 MOV A,#0 ;load 0 into A
5 0006 2D ADD A,R5 ;add contents of R5 to A

;now A = A + R5
6 0007 2F ADD A,R7 ;add contents of R7 to A

;now A = A + R7
7 0008 2412 ADD A,#12H ;add to A value 12H

;now A = A + 12H
8 000A 80EF HERE: SJMP HERE;stay in this loop
9 000C END ;end of asm source file

address

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

PROGRAM
COUNTER AND

ROM SPACE

Program
Counter

The program counter points to the
address of the next instruction to be
executed

As the CPU fetches the opcode from the
program ROM, the program counter is
increasing to point to the next instruction

The program counter is 16 bits wide
This means that it can access program
addresses 0000 to FFFFH, a total of 64K
bytes of code

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

PROGRAM
COUNTER AND

ROM SPACE

Power up

All 8051 members start at memory
address 0000 when they’re powered
up

Program Counter has the value of 0000
The first opcode is burned into ROM
address 0000H, since this is where the
8051 looks for the first instruction when it
is booted
We achieve this by the ORG statement in
the source program

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

PROGRAM
COUNTER AND

ROM SPACE

Placing Code in
ROM

Examine the list file and how the code
is placed in ROM

1 0000 ORG 0H ;start (origin) at 0
2 0000 7D25 MOV R5,#25H ;load 25H into R5
3 0002 7F34 MOV R7,#34H ;load 34H into R7
4 0004 7400 MOV A,#0 ;load 0 into A
5 0006 2D ADD A,R5 ;add contents of R5 to A

;now A = A + R5
6 0007 2F ADD A,R7 ;add contents of R7 to A

;now A = A + R7
7 0008 2412 ADD A,#12H ;add to A value 12H

;now A = A + 12H
8 000A 80EF HERE: SJMP HERE ;stay in this loop
9 000C END ;end of asm source file

HERE: SJMP HERE80EF000A
ADD A, #12H24120008
ADD A, R72F0007
ADD A, R52D0006
MOV A, #074000004
MOV R7, #34H7F340002
MOV R5, #25H7D250000

Assembly LanguageMachine LanguageROM Address

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

PROGRAM
COUNTER AND

ROM SPACE

Placing Code in
ROM
(cont’)

After the program is burned into ROM,
the opcode and operand are placed in
ROM memory location starting at 0000

FE000B

80000A

120009

240008

2F0007

2D0006

000005

740004

340003

7F0002

250001

7D0000

CodeAddress
ROM contents

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

PROGRAM
COUNTER AND

ROM SPACE

Executing
Program

A step-by-step description of the
action of the 8051 upon applying
power on it

1. When 8051 is powered up, the PC has
0000 and starts to fetch the first opcode
from location 0000 of program ROM

Upon executing the opcode 7D, the CPU
fetches the value 25 and places it in R5
Now one instruction is finished, and then the
PC is incremented to point to 0002, containing
opcode 7F

2. Upon executing the opcode 7F, the value
34H is moved into R7

The PC is incremented to 0004

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

PROGRAM
COUNTER AND

ROM SPACE

Executing
Program

(cont’)

(cont’)

3. The instruction at location 0004 is
executed and now PC = 0006

4. After the execution of the 1-byte
instruction at location 0006, PC = 0007

5. Upon execution of this 1-byte instruction
at 0007, PC is incremented to 0008

This process goes on until all the instructions
are fetched and executed
The fact that program counter points at the
next instruction to be executed explains some
microprocessors call it the instruction pointer

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

PROGRAM
COUNTER AND

ROM SPACE

ROM Memory
Map in 8051

Family

No member of 8051 family can access
more than 64K bytes of opcode

The program counter is a 16-bit register

Byte Byte Byte

0000

0FFF

0000 0000

3FFF

7FFF

8751

AT89C51
DS89C420/30

DS5000-32

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

8051 DATA
TYPES AND
DIRECTIVES

Data Type

8051 microcontroller has only one data
type - 8 bits

The size of each register is also 8 bits
It is the job of the programmer to break
down data larger than 8 bits (00 to FFH,
or 0 to 255 in decimal)
The data types can be positive or negative

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

8051 DATA
TYPES AND
DIRECTIVES

Assembler
Directives

The DB directive is the most widely
used data directive in the assembler

It is used to define the 8-bit data
When DB is used to define data, the
numbers can be in decimal, binary, hex,
ASCII formats

ORG 500H
DATA1: DB 28 ;DECIMAL (1C in Hex)
DATA2: DB 00110101B ;BINARY (35 in Hex)
DATA3: DB 39H ;HEX

ORG 510H
DATA4: DB “2591” ;ASCII NUMBERS

ORG 518H
DATA6: DB “My name is Joe”

;ASCII CHARACTERS

The “D” after the decimal
number is optional, but using

“B” (binary) and “H”
(hexadecimal) for the others is

required

The Assembler will
convert the numbers
into hex

Place ASCII in quotation marks
The Assembler will assign ASCII
code for the numbers or characters

Define ASCII strings larger
than two characters

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

8051 DATA
TYPES AND
DIRECTIVES

Assembler
Directives

(cont’)

ORG (origin)
The ORG directive is used to indicate the
beginning of the address
The number that comes after ORG can be
either in hex and decimal

If the number is not followed by H, it is decimal
and the assembler will convert it to hex

END
This indicates to the assembler the end of
the source (asm) file
The END directive is the last line of an
8051 program

Mean that in the code anything after the END
directive is ignored by the assembler

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

8051 DATA
TYPES AND
DIRECTIVES

Assembler
directives

(cont’)

EQU (equate)
This is used to define a constant without
occupying a memory location
The EQU directive does not set aside
storage for a data item but associates a
constant value with a data label

When the label appears in the program, its
constant value will be substituted for the label

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

8051 DATA
TYPES AND
DIRECTIVES

Assembler
directives

(cont’)

EQU (equate) (cont’)

Assume that there is a constant used in
many different places in the program, and
the programmer wants to change its value
throughout

By the use of EQU, one can change it once and
the assembler will change all of its occurrences

COUNT EQU 25
...
MOV R3, #COUNT

Use EQU for the
counter constant

The constant is used to
load the R3 register

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

FLAG BITS AND
PSW REGISTER

Program Status
Word

The program status word (PSW)
register, also referred to as the flag
register, is an 8 bit register

Only 6 bits are used
These four are CY (carry), AC (auxiliary carry), P
(parity), and OV (overflow)

– They are called conditional flags, meaning
that they indicate some conditions that
resulted after an instruction was executed

The PSW3 and PSW4 are designed as RS0 and
RS1, and are used to change the bank

The two unused bits are user-definable

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

FLAG BITS AND
PSW REGISTER

Program Status
Word (cont’)

P--OVRS0RS1F0ACCY

CY PSW.7 Carry flag.
AC PSW.6 Auxiliary carry flag.
-- PSW.5 Available to the user for general purpose
RS1 PSW.4 Register Bank selector bit 1.
RS0 PSW.3 Register Bank selector bit 0.
OV PSW.2 Overflow flag.
-- PSW.1 User definable bit.
P PSW.0 Parity flag. Set/cleared by hardware each

instruction cycle to indicate an odd/even
number of 1 bits in the accumulator.

18H – 1FH311

10H – 17H201

08H – 0FH110

00H – 07H000

AddressRegister BankRS0RS1

Carry out from the d7 bit

A carry from D3 to D4

Reflect the number of 1s
in register AThe result of

signed number
operation is too
large, causing
the high-order
bit to overflow
into the sign bit

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW

XCJNE

XMOV C, bit

XORL C, /bit

XORL C, bit

XANL C, /bit

XANL C, bit

XCPL C

0CLR C

1SETB C

XPLC

XRPC

XDA

X0DIV

X0MUL

XXXSUBB

XXXADDC

XXXADD

ACOVCYInstruction

Instructions that affect flag bits

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW
(cont’)

Example 2-2

Show the status of the CY, AC and P flag after the addition of 38H
and 2FH in the following instructions.

MOV A, #38H

ADD A, #2FH ;after the addition A=67H, CY=0

Solution:

38 00111000

+ 2F 00101111

67 01100111

CY = 0 since there is no carry beyond the D7 bit

AC = 1 since there is a carry from the D3 to the D4 bi

P = 1 since the accumulator has an odd number of 1s (it has five 1s)

The flag bits affected by the ADD
instruction are CY, P, AC, and OV

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW
(cont’)

Example 2-3

Show the status of the CY, AC and P flag after the addition of 9CH
and 64H in the following instructions.

MOV A, #9CH

ADD A, #64H ;after the addition A=00H, CY=1

Solution:

9C 10011100

+ 64 01100100

100 00000000

CY = 1 since there is a carry beyond the D7 bit

AC = 1 since there is a carry from the D3 to the D4 bi

P = 0 since the accumulator has an even number of 1s (it has zero 1s)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

FLAG BITS AND
PSW REGISTER

ADD
Instruction And

PSW
(cont’)

Example 2-4

Show the status of the CY, AC and P flag after the addition of 88H
and 93H in the following instructions.

MOV A, #88H

ADD A, #93H ;after the addition A=1BH, CY=1

Solution:

88 10001000

+ 93 10010011

11B 00011011

CY = 1 since there is a carry beyond the D7 bit

AC = 0 since there is no carry from the D3 to the D4 bi

P = 0 since the accumulator has an even number of 1s (it has four 1s)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

REGISTER
BANKS AND

STACK

RAM Memory
Space

Allocation

There are 128 bytes of RAM in the
8051

Assigned addresses 00 to 7FH
The 128 bytes are divided into three
different groups as follows:

1) A total of 32 bytes from locations 00 to
1F hex are set aside for register banks
and the stack

2) A total of 16 bytes from locations 20H to
2FH are set aside for bit-addressable
read/write memory

3) A total of 80 bytes from locations 30H to
7FH are used for read and write storage,
called scratch pad

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

8051
REGISTER

BANKS AND
STACK

RAM Memory
Space

Allocation
(cont’)

Scratch pad RAM

Bit-Addressable RAM

Register Bank 3

Register Bank 2

Register Bank 1 (stack)

Register Bank 0

00

07
08

0F
10
17
18

1F
20

2F
30

7F

RAM Allocation in 8051

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

8051
REGISTER

BANKS AND
STACK

Register Banks

These 32 bytes are divided into 4
banks of registers in which each bank
has 8 registers, R0-R7

RAM location from 0 to 7 are set aside for
bank 0 of R0-R7 where R0 is RAM location
0, R1 is RAM location 1, R2 is RAM
location 2, and so on, until memory
location 7 which belongs to R7 of bank 0
It is much easier to refer to these RAM
locations with names such as R0, R1, and
so on, than by their memory locations

Register bank 0 is the default when
8051 is powered up

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

8051
REGISTER

BANKS AND
STACK

Register Banks
(cont’)

R7

R6

R5

R4

R3

R2

R1

R0

Bank 0 Bank 1 Bank 2 Bank 3

7

6

5

4

3

2

0

1

F

E

D

C

B

A

8

9

1F

1E

1D

1C

1B

1A

18

19

17

16

15

14

13

12

10

11

R7

R6

R5

R4

R3

R2

R1

R0

R7

R6

R5

R4

R3

R2

R1

R0

R7

R6

R5

R4

R3

R2

R1

R0

Register banks and their RAM address

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 38HANEL

8051
REGISTER

BANKS AND
STACK

Register Banks
(cont’)

We can switch to other banks by use
of the PSW register

Bits D4 and D3 of the PSW are used to
select the desired register bank
Use the bit-addressable instructions SETB
and CLR to access PSW.4 and PSW.3

11Bank 3

01Bank 2

10Bank 1

00Bank 0

RS0(PSW.3)RS1(PSW.4)
PSW bank selection

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 39HANEL

8051
REGISTER

BANKS AND
STACK

Register Banks
(cont’)

Example 2-5

MOV R0, #99H ;load R0 with 99H
MOV R1, #85H ;load R1 with 85H

Example 2-6

MOV 00, #99H ;RAM location 00H has 99H
MOV 01, #85H ;RAM location 01H has 85H

Example 2-7

SETB PSW.4 ;select bank 2
MOV R0, #99H ;RAM location 10H has 99H
MOV R1, #85H ;RAM location 11H has 85H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 40HANEL

8051
REGISTER

BANKS AND
STACK

Stack

The stack is a section of RAM used by
the CPU to store information
temporarily

This information could be data or an
address

The register used to access the stack
is called the SP (stack pointer) register

The stack pointer in the 8051 is only 8 bit
wide, which means that it can take value
of 00 to FFH
When the 8051 is powered up, the SP
register contains value 07

RAM location 08 is the first location begin used
for the stack by the 8051

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 41HANEL

8051
REGISTER

BANKS AND
STACK

Stack
(cont’)

The storing of a CPU register in the
stack is called a PUSH

SP is pointing to the last used location of
the stack
As we push data onto the stack, the SP is
incremented by one

This is different from many microprocessors

Loading the contents of the stack back
into a CPU register is called a POP

With every pop, the top byte of the stack
is copied to the register specified by the
instruction and the stack pointer is
decremented once

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 42HANEL

8051
REGISTER

BANKS AND
STACK

Pushing onto
Stack

Example 2-8

Show the stack and stack pointer from the following. Assume the
default stack area.

MOV R6, #25H
MOV R1, #12H
MOV R4, #0F3H
PUSH 6
PUSH 1
PUSH 4

Solution:

25

12

F3

After PUSH 4

SP = 0A

08

09

0A

0B

SP = 09SP = 08Start SP = 07

2508250808

12090909

0A0A0A

0B0B0B

After PUSH 1After PUSH 6

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 43HANEL

8051
REGISTER

BANKS AND
STACK

Popping From
Stack

Example 2-9

Examining the stack, show the contents of the register and SP after
execution of the following instructions. All value are in hex.
POP 3 ; POP stack into R3
POP 5 ; POP stack into R5
POP 2 ; POP stack into R2

Solution:

6C

After POP 2

SP = 08

08

09

0A

0B

SP = 09SP = 0AStart SP = 0B

6C086C086C08

760976097609

0AF90AF90A

0B0B540B

After POP 5After POP 3

Because locations 20-2FH of RAM are reserved
for bit-addressable memory, so we can change the
SP to other RAM location by using the instruction
“MOV SP, #XX”

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 44HANEL

8051
REGISTER

BANKS AND
STACK

CALL
Instruction And

Stack

The CPU also uses the stack to save
the address of the instruction just
below the CALL instruction

This is how the CPU knows where to
resume when it returns from the called
subroutine

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 45HANEL

8051
REGISTER

BANKS AND
STACK

Incrementing
Stack Pointer

The reason of incrementing SP after
push is

Make sure that the stack is growing
toward RAM location 7FH, from lower to
upper addresses
Ensure that the stack will not reach the
bottom of RAM and consequently run out
of stack space
If the stack pointer were decremented
after push

We would be using RAM locations 7, 6, 5, etc.
which belong to R7 to R0 of bank 0, the default
register bank

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 46HANEL

8051
REGISTER

BANKS AND
STACK

Stack and Bank
1 Conflict

When 8051 is powered up, register
bank 1 and the stack are using the
same memory space

We can reallocate another section of RAM
to the stack

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 47HANEL

8051
REGISTER

BANKS AND
STACK

Stack And Bank
1 Conflict

(cont’)

Example 2-10

Examining the stack, show the contents of the register and SP after
execution of the following instructions. All value are in hex.
MOV SP, #5FH ;make RAM location 60H

;first stack location
MOV R2, #25H
MOV R1, #12H
MOV R4, #0F3H
PUSH 2
PUSH 1
PUSH 4

Solution:

25

12

F3

After PUSH 4

SP = 62

60

61

62

63

SP = 61SP = 60Start SP = 5F

2560256060

12616161

626262

636363

After PUSH 1After PUSH 2

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

JUMP, LOOP AND CALL
INSTRUCTIONS

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

LOOP AND
JUMP

INSTRUCTIONS

Looping

Repeating a sequence of instructions a
certain number of times is called a
loop

Loop action is performed by
DJNZ reg, Label

The register is decremented
If it is not zero, it jumps to the target address
referred to by the label
Prior to the start of loop the register is loaded
with the counter for the number of repetitions
Counter can be R0 – R7 or RAM location

;This program adds value 3 to the ACC ten times
MOV A,#0 ;A=0, clear ACC
MOV R2,#10 ;load counter R2=10

AGAIN: ADD A,#03 ;add 03 to ACC
DJNZ R2,AGAIN ;repeat until R2=0,10 times
MOV R5,A ;save A in R5

A loop can be repeated a
maximum of 255 times, if
R2 is FFH

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

LOOP AND
JUMP

INSTRUCTIONS

Nested Loop

If we want to repeat an action more
times than 256, we use a loop inside a
loop, which is called nested loop

We use multiple registers to hold the
count

Write a program to (a) load the accumulator with the value 55H, and
(b) complement the ACC 700 times

MOV A,#55H ;A=55H
MOV R3,#10 ;R3=10, outer loop count

NEXT: MOV R2,#70 ;R2=70, inner loop count
AGAIN: CPL A ;complement A register

DJNZ R2,AGAIN ;repeat it 70 times
DJNZ R3,NEXT

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

LOOP AND
JUMP

INSTRUCTIONS

Conditional
Jumps

MOV A,R0 ;A=R0
JZ OVER ;jump if A = 0
MOV A,R1 ;A=R1
JZ OVER ;jump if A = 0
...

OVER:

Jump only if a certain condition is met
JZ label ;jump if A=0

Determine if R5 contains the value 0. If so, put 55H in it.

MOV A,R5 ;copy R5 to A
JNZ NEXT ;jump if A is not zero
MOV R5,#55H

NEXT: ...

Can be used only for register A,
not any other register

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

LOOP AND
JUMP

INSTRUCTIONS

Conditional
Jumps
(cont’)

(cont’)
JNC label ;jump if no carry, CY=0

If CY = 0, the CPU starts to fetch and execute
instruction from the address of the label
If CY = 1, it will not jump but will execute the next
instruction below JNC

Find the sum of the values 79H, F5H, E2H. Put the sum in registers
R0 (low byte) and R5 (high byte).

MOV A,#0 ;A=0
MOV R5,A ;clear R5
ADD A,#79H ;A=0+79H=79H

; JNC N_1 ;if CY=0, add next number
; INC R5 ;if CY=1, increment R5
N_1: ADD A,#0F5H ;A=79+F5=6E and CY=1

JNC N_2 ;jump if CY=0
INC R5 ;if CY=1,increment R5 (R5=1)

N_2: ADD A,#0E2H ;A=6E+E2=50 and CY=1
JNC OVER ;jump if CY=0
INC R5 ;if CY=1, increment 5

OVER: MOV R0,A ;now R0=50H, and R5=02

MOV R5,#0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

LOOP AND
JUMP

INSTRUCTIONS

Conditional
Jumps
(cont’)

All conditional jumps are short jumps
The address of the target must within
-128 to +127 bytes of the contents of PC

Jump if bit ＝ 1 and clear bitJBC
Jump if bit ＝ 0JNB
Jump if bit ＝ 1JB
Jump if CY ＝ 0JNC
Jump if CY ＝ 1JC
Jump if byte ≠ #dataCJNE reg,#data
Jump if A ≠ byteCJNE A,byte
Decrement and Jump if A ≠ 0DJNZ
Jump if A ≠ 0JNZ
Jump if A ＝ 0JZ
ActionsInstructions

8051 conditional jump instructions

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

LOOP AND
JUMP

INSTRUCTIONS

Unconditional
Jumps

The unconditional jump is a jump in
which control is transferred
unconditionally to the target location

LJMP (long jump)
3-byte instruction

First byte is the opcode
Second and third bytes represent the 16-bit
target address

– Any memory location from 0000 to FFFFH

SJMP (short jump)
2-byte instruction

First byte is the opcode
Second byte is the relative target address

– 00 to FFH (forward +127 and backward
-128 bytes from the current PC)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

LOOP AND
JUMP

INSTRUCTIONS

Calculating
Short Jump

Address

To calculate the target address of a
short jump (SJMP, JNC, JZ, DJNZ, etc.)

The second byte is added to the PC of the
instruction immediately below the jump

If the target address is more than -128
to +127 bytes from the address below
the short jump instruction

The assembler will generate an error
stating the jump is out of range

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

LOOP AND
JUMP

INSTRUCTIONS

Calculating
Short Jump

Address
(cont’)

Line PC Opcode Mnemonic Operand
01 0000 ORG 0000
02 0000 7800 MOV R0,#0
03 0002 7455 MOV A,#55H
04 0004 6003 JZ NEXT
05 0006 08 INC R0
06 0007 04 AGAIN: INC A
07 0008 04 INC A
08 0009 2477 NEXT: ADD A,#77H
09 000B 5005 JNC OVER
10 000D E4 CLR A
11 000E F8 MOV R0,A
12 000F F9 MOV R1,A
13 0010 FA MOV R2,A
14 0011 FB MOV R3,A
15 0012 2B OVER: ADD A,R3
16 0013 50F2 JNC AGAIN
17 0015 80FE HERE: SJMP HERE
18 0017 END

+

+

+

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

CALL
INSTRUCTIONS

Call instruction is used to call subroutine
Subroutines are often used to perform tasks
that need to be performed frequently
This makes a program more structured in
addition to saving memory space

LCALL (long call)
3-byte instruction

First byte is the opcode
Second and third bytes are used for address of
target subroutine

– Subroutine is located anywhere within 64K
byte address space

ACALL (absolute call)
2-byte instruction

11 bits are used for address within 2K-byte range

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

CALL
INSTRUCTIONS

LCALL

When a subroutine is called, control is
transferred to that subroutine, the
processor

Saves on the stack the the address of the
instruction immediately below the LCALL
Begins to fetch instructions form the new
location

After finishing execution of the
subroutine

The instruction RET transfers control back
to the caller

Every subroutine needs RET as the last
instruction

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

CALL
INSTRUCTIONS

LCALL
(cont’)

ORG 0
BACK: MOV A,#55H ;load A with 55H

MOV P1,A ;send 55H to port 1
LCALL DELAY ;time delay
MOV A,#0AAH ;load A with AA (in hex)
MOV P1,A ;send AAH to port 1
LCALL DELAY
SJMP BACK ;keep doing this indefinitely

;---------- this is delay subroutine ------------
ORG 300H ;put DELAY at address 300H

DELAY: MOV R5,#0FFH ;R5=255 (FF in hex), counter
AGAIN: DJNZ R5,AGAIN ;stay here until R5 become 0

RET ;return to caller (when R5 =0)
END ;end of asm file

Upon executing “LCALL DELAY”,
the address of instruction below it,
“MOV A,#0AAH” is pushed onto
stack, and the 8051 starts to execute
at 300H.

The counter R5 is set to
FFH; so loop is repeated
255 times.

When R5 becomes 0, control falls to the
RET which pops the address from the stack
into the PC and resumes executing the
instructions after the CALL.

The amount of time delay depends
on the frequency of the 8051

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

CALL
INSTRUCTIONS

CALL
Instruction and

Stack

001 0000 ORG 0
002 0000 7455 BACK: MOV A,#55H ;load A with 55H
003 0002 F590 MOV P1,A ;send 55H to p1
004 0004 120300 LCALL DELAY ;time delay
005 0007 74AA MOV A,#0AAH ;load A with AAH
006 0009 F590 MOV P1,A ;send AAH to p1
007 000B 120300 LCALL DELAY
008 000E 80F0 SJMP BACK ;keep doing this
009 0010
010 0010 ;-------this is the delay subroutine------
011 0300 ORG 300H
012 0300 DELAY:
013 0300 7DFF MOV R5,#0FFH ;R5=255
014 0302 DDFE AGAIN: DJNZ R5,AGAIN ;stay here
015 0304 22 RET ;return to caller
016 0305 END ;end of asm file

0708

SP = 09

0009

0A

Stack frame after the first LCALL

Low byte goes first
and high byte is last

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

CALL
INSTRUCTIONS

Use PUSH/POP
in Subroutine

01 0000 ORG 0
02 0000 7455 BACK: MOV A,#55H ;load A with 55H
03 0002 F590 MOV P1,A ;send 55H to p1
04 0004 7C99 MOV R4,#99H
05 0006 7D67 MOV R5,#67H
06 0008 120300 LCALL DELAY ;time delay
07 000B 74AA MOV A,#0AAH ;load A with AA
08 000D F590 MOV P1,A ;send AAH to p1
09 000F 120300 LCALL DELAY
10 0012 80EC SJMP BACK ;keeping doing

this
11 0014 ;-------this is the delay subroutine------
12 0300 ORG 300H
13 0300 C004 DELAY: PUSH 4 ;push R4
14 0302 C005 PUSH 5 ;push R5
15 0304 7CFF MOV R4,#0FFH;R4=FFH
16 0306 7DFF NEXT: MOV R5,#0FFH;R5=FFH
17 0308 DDFE AGAIN: DJNZ R5,AGAIN
18 030A DCFA DJNZ R4,NEXT
19 030C D005 POP 5 ;POP into R5
20 030E D004 POP 4 ;POP into R4
21 0310 22 RET ;return to caller
22 0311 END ;end of asm file

Normally, the
number of PUSH
and POP
instructions must
always match in any
called subroutine

PCL0B08PCL0B08PCL0B08

PCH0009PCH0009PCH0009

R4990AR4990A0A

R5670B0B0B

After PUSH 5After PUSH 4After first LCALL

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

CALL
INSTRUCTIONS

Calling
Subroutines

;MAIN program calling subroutines
ORG 0

MAIN: LCALL SUBR_1
LCALL SUBR_2
LCALL SUBR_3

HERE: SJMP HERE
;-----------end of MAIN

SUBR_1: ...
...
RET

;-----------end of subroutine1

SUBR_2: ...
...
RET

;-----------end of subroutine2

SUBR_3: ...
...
RET

;-----------end of subroutine3
END ;end of the asm file

It is common to have one
main program and many
subroutines that are called
from the main program

This allows you to make
each subroutine into a
separate module
- Each module can be
tested separately and then
brought together with
main program
- In a large program, the
module can be assigned to
different programmers

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

CALL
INSTRUCTIONS

ACALL

The only difference between ACALL
and LCALL is

The target address for LCALL can be
anywhere within the 64K byte address
The target address of ACALL must be
within a 2K-byte range

The use of ACALL instead of LCALL
can save a number of bytes of
program ROM space

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

CALL
INSTRUCTIONS

ACALL
(cont’)

ORG 0
MOV A,#55H ;load A with 55H

BACK: MOV P1,A ;send 55H to port 1
ACALL DELAY ;time delay
CPL A ;complement reg A
SJMP BACK ;keep doing this indefinitely
...
END ;end of asm file

ORG 0
BACK: MOV A,#55H ;load A with 55H

MOV P1,A ;send 55H to port 1
LCALL DELAY ;time delay
MOV A,#0AAH ;load A with AA (in hex)
MOV P1,A ;send AAH to port 1
LCALL DELAY
SJMP BACK ;keep doing this indefinitely
...
END ;end of asm file

A rewritten program which is more efficiently

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

TIME DELAY
FOR VARIOUS
8051 CHIPS

CPU executing an instruction takes a
certain number of clock cycles

These are referred as to as machine cycles

The length of machine cycle depends
on the frequency of the crystal
oscillator connected to 8051
In original 8051, one machine cycle
lasts 12 oscillator periods

Find the period of the machine cycle for 11.0592 MHz crystal
frequency

Solution:
11.0592/12 = 921.6 kHz;

machine cycle is 1/921.6 kHz = 1.085μs

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

TIME DELAY
FOR VARIOUS
8051 CHIPS

(cont’)

For 8051 system of 11.0592 MHz, find how long it takes to execute
each instruction.

(a) MOV R3,#55 (b) DEC R3 (c) DJNZ R2 target
(d) LJMP (e) SJMP (f) NOP (g) MUL AB

Solution:
Machine cycles Time to execute

(a) 1 1x1.085μs ＝ 1.085μs
(b) 1 1x1.085μs ＝ 1.085μs
(c) 2 2x1.085μs ＝ 2.17μs
(d) 2 2x1.085μs ＝ 2.17μs
(e) 2 2x1.085μs ＝ 2.17μs
(f) 1 1x1.085μs ＝ 1.085μs
(g) 4 4x1.085μs ＝ 4.34μs

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

TIME DELAY
FOR VARIOUS
8051 CHIPS

Delay
Calculation

Find the size of the delay in following program, if the crystal
frequency is 11.0592MHz.

MOV A,#55H
AGAIN: MOV P1,A

ACALL DELAY
CPL A
SJMP AGAIN

;---time delay-------
DELAY: MOV R3,#200
HERE: DJNZ R3,HERE

RET

Solution:
Machine cycle

DELAY: MOV R3,#200 1
HERE: DJNZ R3,HERE 2

RET 2

Therefore, [(200x2)+1+2]x1.085μs ＝ 436.255μs.

A simple way to short jump
to itself in order to keep the
microcontroller busy
HERE: SJMP HERE
We can use the following:

SJMP $

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

TIME DELAY
FOR VARIOUS
8051 CHIPS

Increasing
Delay Using

NOP

Find the size of the delay in following program, if the crystal
frequency is 11.0592MHz.

Machine Cycle
DELAY: MOV R3,#250 1
HERE: NOP 1

NOP 1
NOP 1
NOP 1
DJNZ R3,HERE 2
RET 2

Solution:
The time delay inside HERE loop is

[250(1+1+1+1+2)]x1.085μs ＝ 1627.5μs.
Adding the two instructions outside loop we

have 1627.5μs + 3 x 1.085μs ＝ 1630.755μs

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

TIME DELAY
FOR VARIOUS
8051 CHIPS

Large Delay
Using Nested

Loop

Find the size of the delay in following program, if the crystal
frequency is 11.0592MHz.

Machine Cycle
DELAY: MOV R2,#200 1
AGAIN: MOV R3,#250 1
HERE: NOP 1

NOP 1
DJNZ R3,HERE 2
DJNZ R2,AGAIN 2
RET 2

Solution:
For HERE loop, we have (4x250)x1.085μs＝1085μs.
For AGAIN loop repeats HERE loop 200 times, so
we have 200x1085μs＝217000μs. But “MOV
R3,#250” and “DJNZ R2,AGAIN” at the start and
end of the AGAIN loop add (3x200x1.805)=651μs.
As a result we have 217000+651=217651μs.

Notice in nested loop,
as in all other time
delay loops, the time
is approximate since
we have ignored the
first and last
instructions in the
subroutine.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

TIME DELAY
FOR VARIOUS
8051 CHIPS

Delay
Calculation for

Other 8051

Two factors can affect the accuracy of
the delay

Crystal frequency
The duration of the clock period of the machine
cycle is a function of this crystal frequency

8051 design
The original machine cycle duration was set at
12 clocks
Advances in both IC technology and CPU
design in recent years have made the 1-clock
machine cycle a common feature

1DS89C420/30/40/50 Dallas Semi

4DS5000 Dallas Semi

6P89C54X2 Philips

12AT89C51 Atmel

Clocks per Machine CycleChip/Maker

Clocks per machine cycle for various 8051 versions

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

TIME DELAY
FOR VARIOUS
8051 CHIPS

Delay
Calculation for

Other 8051
(cont’)

Find the period of the machine cycle (MC) for various versions of
8051, if XTAL=11.0592 MHz.

(a) AT89C51 (b) P89C54X2 (c) DS5000 (d) DS89C4x0

Solution:
(a) 11.0592MHz/12 = 921.6kHz;

MC is 1/921.6kHz = 1.085μs ＝ 1085ns
(b) 11.0592MHz/6 = 1.8432MHz;

MC is 1/1.8432MHz = 0.5425μs ＝ 542ns
(c) 11.0592MHz/4 = 2.7648MHz ;

MC is 1/2.7648MHz = 0.36μs ＝ 360ns
(d) 11.0592MHz/1 = 11.0592MHz;

MC is 1/11.0592MHz = 0.0904μs ＝ 90ns

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

TIME DELAY
FOR VARIOUS
8051 CHIPS

Delay
Calculation for

Other 8051
(cont’)

For an AT8051 and DSC89C4x0 system of 11.0592 MHz, find how
long it takes to execute each instruction.

(a) MOV R3,#55 (b) DEC R3 (c) DJNZ R2 target
(d) LJMP (e) SJMP (f) NOP (g) MUL AB

Solution:
AT8051 DS89C4x0

(a) 1 1085ns ＝ 1085ns 2 90ns = 180ns
(b) 1 1085ns ＝ 1085ns 1 90ns = 90ns
(c) 2 1085ns ＝ 2170ns 4 90ns = 360ns
(d) 2 1085ns ＝ 2170ns 3 90ns = 270ns
(e) 2 1085ns ＝ 2170ns 3 90ns = 270ns
(f) 1 1085ns ＝ 1085ns 1 90ns = 90ns
(g) 4 1085ns ＝ 4340ns 9 90ns = 810ns

11NOP
32SJMP
32LJMP

4

2
1
1

8051

9MUL AB

4DJNZ R2 target
1DEC R3
2MOV R3,#55

DSC89C4x0Instruction

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

I/O PORT
PROGRAMMING

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

I/O
PROGRAMMING

8051
(8031)

(89420)

P1.0
P1.1

P1.2
P1.3
P1.4
P1.5
P1.6

P1.7

RST

(RXD) P3.0
(TXD) P3.1

(-INT0) P3.2
(-INT1) P3.3

(T0) P3.4
(T1) P3.5

(-WR) P3.6
(-RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0 (AD0)

P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
P0.4 (AD4)
P0.5 (AD5)

P0.6 (AD6)

P0.7 (AD7)

-EA/VPP
ALE/PROG
-PSEN
P2.7 (A15)
P2.6 (A14)
P2.5 (A13)
P2.4 (A12)
P2.3 (A11)
P2.2 (A10)
P2.1 (A9)
P2.0 (A8)

1
2

3
4
5
6
7

8

9

10
11
12
13
14
15
16
17
18
19
20

40
39

38
37
36
35
34

33

32

31
30
29
28
27
26
25
24
23
22
21

Provides
+5V supply
voltage to
the chip

Grond

P1

P3

8051 Pin Diagram

A total of 32
pins are set
aside for the
four ports P0,
P1, P2, P3,
where each
port takes 8
pins

P0

P2

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

I/O
PROGRAMMING

I/O Port Pins

The four 8-bit I/O ports P0, P1, P2 and
P3 each uses 8 pins
All the ports upon RESET are
configured as input, ready to be used
as input ports

When the first 0 is written to a port, it
becomes an output
To reconfigure it as an input, a 1 must be
sent to the port

To use any of these ports as an input port, it
must be programmed

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

I/O
PROGRAMMING

Port 0

It can be used for input or output,
each pin must be connected externally
to a 10K ohm pull-up resistor

This is due to the fact that P0 is an open
drain, unlike P1, P2, and P3

Open drain is a term used for MOS chips in the
same way that open collector is used for TTL
chips

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

Vcc
10 K

8051

Port 0

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

P0.X

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

I/O
PROGRAMMING

Port 0
(cont’)

The following code will continuously send out to port 0 the
alternating value 55H and AAH

BACK: MOV A,#55H
MOV P0,A
ACALL DELAY
MOV A,#0AAH
MOV P0,A
ACALL DELAY
SJMP BACK

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

I/O
PROGRAMMING

Port 0 as Input

In order to make port 0 an input, the
port must be programmed by writing 1
to all the bits

Port 0 is configured first as an input port by writing 1s to it, and then
data is received from that port and sent to P1

MOV A,#0FFH ;A=FF hex
MOV P0,A ;make P0 an i/p port

;by writing it all 1s
BACK: MOV A,P0 ;get data from P0

MOV P1,A ;send it to port 1
SJMP BACK ;keep doing it

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

I/O
PROGRAMMING

Dual Role of
Port 0

Port 0 is also designated as AD0-AD7,
allowing it to be used for both address
and data

When connecting an 8051/31 to an
external memory, port 0 provides both
address and data

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

I/O
PROGRAMMING

Port 1

Port 1 can be used as input or output
In contrast to port 0, this port does not
need any pull-up resistors since it already
has pull-up resistors internally
Upon reset, port 1 is configured as an
input port

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

The following code will continuously send out to port 0 the
alternating value 55H and AAH

MOV A,#55H
BACK: MOV P1,A

ACALL DELAY
CPL A
SJMP BACK

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

I/O
PROGRAMMING

Port 1 as Input

To make port 1 an input port, it must
be programmed as such by writing 1
to all its bits

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Port 1 is configured first as an input port by writing 1s to it, then data
is received from that port and saved in R7 and R5

MOV A,#0FFH ;A=FF hex
MOV P1,A ;make P1 an input port

;by writing it all 1s
MOV A,P1 ;get data from P1
MOV R7,A ;save it to in reg R7
ACALL DELAY ;wait
MOV A,P1 ;another data from P1
MOV R5,A ;save it to in reg R5

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

I/O
PROGRAMMING

Port 2

Port 2 can be used as input or output
Just like P1, port 2 does not need any pull-
up resistors since it already has pull-up
resistors internally
Upon reset, port 2 is configured as an input
port

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

I/O
PROGRAMMING

Port 2 as Input
or Dual Role

To make port 2 an input port, it must
be programmed as such by writing 1 to
all its bits
In many 8051-based system, P2 is used
as simple I/O
In 8031-based systems, port 2 must be
used along with P0 to provide the 16-
bit address for the external memory

Port 2 is also designated as A8 – A15,
indicating its dual function
Port 0 provides the lower 8 bits via A0 – A7

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

I/O
PROGRAMMING

Port 3

Port 3 can be used as input or output
Port 3 does not need any pull-up resistors
Port 3 is configured as an input port upon
reset, this is not the way it is most
commonly used

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

I/O
PROGRAMMING

Port 3
(cont’)

Port 3 has the additional function of
providing some extremely important
signals

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

P3 Bit Function

P3.0 RxD

TxD

INT0

INT1

T0

T1

WR

RD

P3.1

P3.2

P3.3

P3.4

P3.5

P3.6

P3.7

Pin

10

11

12

13

14

15

16

17

Serial
communications

External
interrupts

Timers

Read/Write signals
of external memories

In systems based on 8751, 89C51 or
DS89C4x0, pins 3.6 and 3.7 are used for I/O
while the rest of the pins in port 3 are
normally used in the alternate function role

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

I/O
PROGRAMMING

Port 3
(cont’)

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3

(T0)P3.4
(T1)P3.5

(WR)P3.6
(RD)P3.7

XTAL2
XTAL1

GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Write a program for the DS89C420 to toggle all the bits of P0, P1,
and P2 every 1/4 of a second

ORG 0
BACK: MOV A,#55H

MOV P0,A
MOV P1,A
MOV P2,A
ACALL QSDELAY ;Quarter of a second
MOV A,#0AAH
MOV P0,A
MOV P1,A
MOV P2,A
ACALL QSDELAY
SJMP BACK

QSDELAY:
MOV R5,#11

H3: MOV R4,#248
H2: MOV R3,#255
H1: DJNZ R3,H1 ;4 MC for DS89C4x0

DJNZ R4,H2
DJNZ R5,H3
RET
END

Delay
= 11 × 248 × 255 × 4 MC × 90 ns
= 250,430 µs

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

I/O
PROGRAMMING

Different ways
of Accessing
Entire 8 Bits

The entire 8 bits of Port 1 are accessed
BACK: MOV A,#55H

MOV P1,A
ACALL DELAY
MOV A,#0AAH
MOV P1,A
ACALL DELAY
SJMP BACK

Rewrite the code in a more efficient manner by accessing the port
directly without going through the accumulator
BACK: MOV P1,#55H

ACALL DELAY
MOV P1,#0AAH
ACALL DELAY
SJMP BACK

Another way of doing the same thing
MOV A,#55H

BACK: MOV P1,A
ACALL DELAY
CPL A
SJMP BACK

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

I/O BIT
MANIPULATION
PROGRAMMING

I/O Ports
and Bit

Addressability

Sometimes we need to access only 1
or 2 bits of the port

BACK: CPL P1.2 ;complement P1.2
ACALL DELAY
SJMP BACK

;another variation of the above program
AGAIN: SETB P1.2 ;set only P1.2

ACALL DELAY
CLR P1.2 ;clear only P1.2
ACALL DELAY
SJMP AGAIN P0 P1 P2 P3

P1.0 P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

P1.1
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6

P1.2
P1.3
P1.4
P1.5
P1.6
P1.7 P3.7

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

Port Bit
D0
D1
D2
D3
D4
D5
D6
D7

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

I/O BIT
MANIPULATION
PROGRAMMING

I/O Ports
and Bit

Addressability
(cont’)

Example 4-2
Write the following programs.
Create a square wave of 50% duty cycle on bit 0 of port 1.

Solution:
The 50% duty cycle means that the “on” and “off” state (or the high

and low portion of the pulse) have the same length. Therefore,
we toggle P1.0 with a time delay in between each state.

HERE: SETB P1.0 ;set to high bit 0 of port 1
LCALL DELAY ;call the delay subroutine
CLR P1.0 ;P1.0=0
LCALL DELAY
SJMP HERE ;keep doing it

Another way to write the above program is:
HERE: CPL P1.0 ;set to high bit 0 of port 1

LCALL DELAY ;call the delay subroutine
SJMP HERE ;keep doing it

8051

P1.0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

I/O BIT
MANIPULATION
PROGRAMMING

I/O Ports
and Bit

Addressability
(cont’)

Instructions that are used for signal-bit
operations are as following

Instruction Function

SETB bit Set the bit (bit = 1)

CLR bit Clear the bit (bit = 0)
CPL bit Complement the bit (bit = NOT bit)
JB bit, target Jump to target if bit = 1 (jump if bit)
JNB bit, target Jump to target if bit = 0 (jump if no bit)
JBC bit, target Jump to target if bit = 1, clear bit

(jump if bit, then clear)

Single-Bit Instructions

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

I/O BIT
MANIPULATION
PROGRAMMING

Checking an
Input Bit

The JNB and JB instructions are widely
used single-bit operations

They allow you to monitor a bit and make
a decision depending on whether it’s 0 or 1
These two instructions can be used for any
bits of I/O ports 0, 1, 2, and 3

Port 3 is typically not used for any I/O, either
single-bit or byte-wise

Mnemonic Examples Description

MOV A,PX MOV A,P2 Bring into A the data at P2 pins

JNB PX.Y, .. JNB P2.1,TARGET Jump if pin P2.1 is low

JB PX.Y, .. JB P1.3,TARGET Jump if pin P1.3 is high

MOV C,PX.Y MOV C,P2.4 Copy status of pin P2.4 to CY

Instructions for Reading an Input Port

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

I/O BIT
MANIPULATION
PROGRAMMING

Checking an
Input Bit

(cont’)

Example 4-3
Write a program to perform the following:
(a) Keep monitoring the P1.2 bit until it becomes high
(b) When P1.2 becomes high, write value 45H to port 0
(c) Send a high-to-low (H-to-L) pulse to P2.3

Solution:
SETB P1.2 ;make P1.2 an input
MOV A,#45H ;A=45H

AGAIN: JNB P1.2,AGAIN ; get out when P1.2=1
MOV P0,A ;issue A to P0
SETB P2.3 ;make P2.3 high
CLR P2.3 ;make P2.3 low for H-to-L

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

I/O BIT
MANIPULATION
PROGRAMMING

Checking an
Input Bit

(cont’)

Example 4-4
Assume that bit P2.3 is an input and represents the condition of an
oven. If it goes high, it means that the oven is hot. Monitor the bit
continuously. Whenever it goes high, send a high-to-low pulse to port
P1.5 to turn on a buzzer.

Solution:
HERE: JNB P2.3,HERE ;keep monitoring for high

SETB P1.5 ;set bit P1.5=1
CLR P1.5 ;make high-to-low
SJMP HERE ;keep repeating

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

I/O BIT
MANIPULATION
PROGRAMMING

Checking an
Input Bit

(cont’)

Example 4-5
A switch is connected to pin P1.7. Write a program to check the status
of SW and perform the following:
(a) If SW=0, send letter ‘N’ to P2
(b) If SW=1, send letter ‘Y’ to P2

Solution:
SETB P1.7 ;make P1.7 an input

AGAIN: JB P1.2,OVER ;jump if P1.7=1
MOV P2,#’N’ ;SW=0, issue ‘N’ to P2
SJMP AGAIN ;keep monitoring

OVER: MOV P2,#’Y’ ;SW=1, issue ‘Y’ to P2
SJMP AGAIN ;keep monitoring

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

I/O BIT
MANIPULATION
PROGRAMMING

Reading Single
Bit into Carry

Flag

Example 4-6
A switch is connected to pin P1.7. Write a program to check the status
of SW and perform the following:
(a) If SW=0, send letter ‘N’ to P2
(b) If SW=1, send letter ‘Y’ to P2
Use the carry flag to check the switch status.

Solution:
SETB P1.7 ;make P1.7 an input

AGAIN: MOV C,P1.2 ;read SW status into CF
JC OVER ;jump if SW=1
MOV P2,#’N’ ;SW=0, issue ‘N’ to P2
SJMP AGAIN ;keep monitoring

OVER: MOV P2,#’Y’ ;SW=1, issue ‘Y’ to P2
SJMP AGAIN ;keep monitoring

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

I/O BIT
MANIPULATION
PROGRAMMING

Reading Single
Bit into Carry

Flag
(cont’)

Example 4-7
A switch is connected to pin P1.0 and an LED to pin P2.7. Write a
program to get the status of the switch and send it to the LED

Solution:
SETB P1.7 ;make P1.7 an input

AGAIN: MOV C,P1.0 ;read SW status into CF
MOV P2.7,C ;send SW status to LED
SJMP AGAIN ;keep repeating

The instruction
‘MOV
P2.7,P1.0’ is
wrong , since such
an instruction does
not exist

However ‘MOV
P2,P1’ is a valid
instruction

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

I/O BIT
MANIPULATION
PROGRAMMING

Reading Input
Pins vs. Port

Latch

In reading a port
Some instructions read the status of port
pins
Others read the status of an internal port
latch

Therefore, when reading ports there
are two possibilities:

Read the status of the input pin
Read the internal latch of the output port

Confusion between them is a major
source of errors in 8051 programming

Especially where external hardware is
concerned

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

READING
INPUT PINS VS.
PORT LATCH

Reading Latch
for Output Port

Some instructions read the contents of
an internal port latch instead of
reading the status of an external pin

For example, look at the ANL P1,A
instruction and the sequence of actions is
executed as follow
1. It reads the internal latch of the port and

brings that data into the CPU
2. This data is ANDed with the contents of

register A
3. The result is rewritten back to the port latch
4. The port pin data is changed and now has the

same value as port latch

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

READING
INPUT PINS VS.
PORT LATCH

Reading Latch
for Output Port

(cont’)

Read-Modify-Write
The instructions read the port latch
normally read a value, perform an
operation then rewrite it back to the port
latch

Mnemonics Example
ANL PX ANL P1,A

ORL PX ORL P2,A

XRL PX XRL P0,A

JBC PX.Y,TARGET JBC P1.1,TARGET

CPL PX.Y CPL P1.2

INC PX INC P1

DEC PX DEC P2

DJNZ PX.Y,TARGET DJNZ P1,TARGET

MOV PX.Y,C MOV P1.2,C

CLR PX.Y CLR P2.3

SETB PX.Y SETB P2.3

Instructions Reading a latch (Read-Modify-Write)

Note: x is 0, 1, 2,
or 3 for P0 – P3

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

I/O BIT
MANIPULATION
PROGRAMMING

Read-modify-
write Feature

The ports in 8051 can be accessed by
the Read-modify-write technique

This feature saves many lines of code by
combining in a single instruction all three
actions
1. Reading the port
2. Modifying it
3. Writing to the port

MOV P1,#55H ;P1=01010101
AGAIN: XRL P1,#0FFH ;EX-OR P1 with 1111 1111

ACALL DELAY
SJMP BACK

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

ADDRESSING MODES

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

ADDRESSING
MODES

The CPU can access data in various
ways, which are called addressing
modes

Immediate
Register
Direct
Register indirect
Indexed

Accessing
memories

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

IMMEDIATE
ADDRESSING

MODE

The source operand is a constant
The immediate data must be preceded by
the pound sign, “#”
Can load information into any registers,
including 16-bit DPTR register

DPTR can also be accessed as two 8-bit
registers, the high byte DPH and low byte DPL

MOV A,#25H ;load 25H into A
MOV R4,#62 ;load 62 into R4
MOV B,#40H ;load 40H into B
MOV DPTR,#4521H ;DPTR=4512H
MOV DPL,#21H ;This is the same
MOV DPH,#45H ;as above

;illegal!! Value > 65535 (FFFFH)
MOV DPTR,#68975

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

IMMEDIATE
ADDRESSING

MODE
(cont’)

We can use EQU directive to access
immediate data

We can also use immediate addressing
mode to send data to 8051 ports

Count EQU 30
... ...
MOV R4,#COUNT ;R4=1EH
MOV DPTR,#MYDATA ;DPTR=200H

ORG 200H
MYDATA: DB “America”

MOV P1,#55H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

REGISTER
ADDRESSING

MODE

Use registers to hold the data to be
manipulated

The source and destination registers
must match in size

MOV DPTR,A will give an error

The movement of data between Rn
registers is not allowed

MOV R4,R7 is invalid

MOV A,R0 ;copy contents of R0 into A
MOV R2,A ;copy contents of A into R2
ADD A,R5 ;add contents of R5 to A
ADD A,R7 ;add contents of R7 to A
MOV R6,A ;save accumulator in R6

MOV DPTR,#25F5H
MOV R7,DPL
MOV R6,DPH

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

ACCESSING
MEMORY

Direct
Addressing

Mode

It is most often used the direct
addressing mode to access RAM
locations 30 – 7FH

The entire 128 bytes of RAM can be
accessed
The register bank locations are accessed
by the register names

Contrast this with immediate
addressing mode

There is no “#” sign in the operand
MOV R0,40H ;save content of 40H in R0
MOV 56H,A ;save content of A in 56H

MOV A,4 ;is same as
MOV A,R4 ;which means copy R4 into A

Register addressing mode

Direct addressing mode

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

ACCESSING
MEMORY

SFR Registers
and Their
Addresses

The SFR (Special Function Register)
can be accessed by their names or by
their addresses

The SFR registers have addresses
between 80H and FFH

Not all the address space of 80 to FF is
used by SFR
The unused locations 80H to FFH are
reserved and must not be used by the
8051 programmer

MOV 0E0H,#55H ;is the same as
MOV A,#55h ;load 55H into A

MOV 0F0H,R0 ;is the same as
MOV B,R0 ;copy R0 into B

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

ACCESSING
MEMORY

SFR Registers
and Their
Addresses

(cont’)

0A8HInterrupt enable controlIE*

………

0B8HInterrupt priority control IP*

0B0HPort 3P3*

0A0HPort 2P2*

90HPort 1P1*

80HPort 0P0*

83HHigh byteDPH

82HLow byteDPL

Data pointer 2 bytesDPTR

81HStack pointerSP

0D0HProgram status wordPSW*

0F0HB registerB*

0E0HAccumulatorACC*

AddressNameSymbol

Special Function Register (SFR) Addresses

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

ACCESSING
MEMORY

SFR Registers
and Their
Addresses

(cont’)

89HTimer/counter mode controlTMOD

88HTimer/counter controlTCON*

0C8HTimer/counter 2 controlT2CON*

87HPower ontrolPCON

* Bit addressable

99HSerial data bufferSBUF

98HSerial controlSCON*

0CAHT/C 2 capture register low byteRCAP2L

0CBHT/C 2 capture register high byteRCAP2H

0CCHTimer/counter 2 low byteTL2

0CDHTimer/counter 2 high byteTH2

8BHTimer/counter 1 low byteTL1

8DHTimer/counter 1 high byteTH1

8AHTimer/counter 0 low byteTL0

8CHTimer/counter 0 high byteTH0

OC9HTimer/counter mode controlT2MOD

AddressNameSymbol

Special Function Register (SFR) Addresses

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

ACCESSING
MEMORY

SFR Registers
and Their
Addresses

(cont’)

Example 5-1

Write code to send 55H to ports P1 and P2, using
(a) their names (b) their addresses

Solution :
(a) MOV A,#55H ;A=55H

MOV P1,A ;P1=55H
MOV P2,A ;P2=55H

(b) From Table 5-1, P1 address=80H; P2 address=A0H
MOV A,#55H ;A=55H

MOV 80H,A ;P1=55H
MOV 0A0H,A ;P2=55H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

ACCESSING
MEMORY

Stack and
Direct

Addressing
Mode

Only direct addressing mode is allowed
for pushing or popping the stack

PUSH A is invalid
Pushing the accumulator onto the stack
must be coded as PUSH 0E0H

Example 5-2

Show the code to push R5 and A onto the stack and then pop them
back them into R2 and B, where B = A and R2 = R5

Solution:

PUSH 05 ;push R5 onto stack
PUSH 0E0H ;push register A onto stack
POP 0F0H ;pop top of stack into B

;now register B = register A
POP 02 ;pop top of stack into R2

;now R2=R6

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

ACCESSING
MEMORY

Register
Indirect

Addressing
Mode

A register is used as a pointer to the
data

Only register R0 and R1 are used for this
purpose
R2 – R7 cannot be used to hold the
address of an operand located in RAM

When R0 and R1 hold the addresses of
RAM locations, they must be preceded
by the “@” sign

MOV A,@R0 ;move contents of RAM whose
;address is held by R0 into A

MOV @R1,B ;move contents of B into RAM
;whose address is held by R1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

ACCESSING
MEMORY

Register
Indirect

Addressing
Mode
(cont’)

Example 5-3

Write a program to copy the value 55H into RAM memory locations
40H to 41H using
(a) direct addressing mode, (b) register indirect addressing mode
without a loop, and (c) with a loop

Solution:
(a)

MOV A,#55H ;load A with value 55H
MOV 40H,A ;copy A to RAM location 40H
MOV 41H.A ;copy A to RAM location 41H

(b)
MOV A,#55H ;load A with value 55H
MOV R0,#40H ;load the pointer. R0=40H
MOV @R0,A ;copy A to RAM R0 points to
INC R0 ;increment pointer. Now R0=41h
MOV @R0,A ;copy A to RAM R0 points to

(c)
MOV A,#55H ;A=55H
MOV R0,#40H ;load pointer.R0=40H,
MOV R2,#02 ;load counter, R2=3

AGAIN: MOV @R0,A ;copy 55 to RAM R0 points to
INC R0 ;increment R0 pointer
DJNZ R2,AGAIN ;loop until counter = zero

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

ACCESSING
MEMORY

Register
Indirect

Addressing
Mode
(cont’)

The advantage is that it makes
accessing data dynamic rather than
static as in direct addressing mode

Looping is not possible in direct
addressing mode

Example 5-4

Write a program to clear 16 RAM locations starting at RAM address
60H

Solution:

CLR A ;A=0
MOV R1,#60H ;load pointer. R1=60H
MOV R7,#16 ;load counter, R7=16

AGAIN: MOV @R1,A ;clear RAM R1 points to
INC R1 ;increment R1 pointer
DJNZ R7,AGAIN ;loop until counter=zero

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

ACCESSING
MEMORY

Register
Indirect

Addressing
Mode
(cont’)

Example 5-5

Write a program to copy a block of 10 bytes of data from 35H to 60H

Solution:

MOV R0,#35H ;source pointer
MOV R1,#60H ;destination pointer
MOV R3,#10 ;counter

BACK: MOV A,@R0 ;get a byte from source
MOV @R1,A ;copy it to destination
INC R0 ;increment source pointer
INC R1 ;increment destination pointer
DJNZ R3,BACK ;keep doing for ten bytes

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

ACCESSING
MEMORY

Register
Indirect

Addressing
Mode
(cont’)

R0 and R1 are the only registers that
can be used for pointers in register
indirect addressing mode
Since R0 and R1 are 8 bits wide, their
use is limited to access any
information in the internal RAM
Whether accessing externally
connected RAM or on-chip ROM, we
need 16-bit pointer

In such case, the DPTR register is used

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

ACCESSING
MEMORY

Indexed
Addressing
Mode and

On-chip ROM
Access

Indexed addressing mode is widely
used in accessing data elements of
look-up table entries located in the
program ROM
The instruction used for this purpose is
MOVC A,@A+DPTR

Use instruction MOVC, “C” means code
The contents of A are added to the 16-bit
register DPTR to form the 16-bit address
of the needed data

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

ACCESSING
MEMORY

Indexed
Addressing

Mode and On-
chip ROM

Access
(cont’)

Example 5-6

In this program, assume that the word “USA” is burned into ROM
locations starting at 200H. And that the program is burned into ROM
locations starting at 0. Analyze how the program works and state
where “USA” is stored after this program is run.

Solution:
ORG 0000H ;burn into ROM starting at 0
MOV DPTR,#200H ;DPTR=200H look-up table addr
CLR A ;clear A(A=0)
MOVC A,@A+DPTR ;get the char from code space
MOV R0,A ;save it in R0
INC DPTR ;DPTR=201 point to next char
CLR A ;clear A(A=0)
MOVC A,@A+DPTR ;get the next char
MOV R1,A ;save it in R1
INC DPTR ;DPTR=202 point to next char
CLR A ;clear A(A=0)
MOVC A,@A+DPTR ;get the next char
MOV R2,A ;save it in R2

Here: SJMP HERE ;stay here
;Data is burned into code space starting at 200H

ORG 200H
MYDATA:DB “USA”

END ;end of program

DPTR=200H, A=0

U200

S201

A202

DPTR=200H, A=55H

DPTR=201H, A=55H

DPTR=201H, A=0

DPTR=201H, A=53H

DPTR=202H, A=53H

R0=55H

R1=53H

R2=41H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

ACCESSING
MEMORY

Look-up Table
(cont’)

The look-up table allows access to
elements of a frequently used table
with minimum operations

Example 5-8
Write a program to get the x value from P1 and send x2 to P2,

continuously

Solution:
ORG 0
MOV DPTR,#300H ;LOAD TABLE ADDRESS
MOV A,#0FFH ;A=FF
MOV P1,A ;CONFIGURE P1 INPUT PORT

BACK:MOV A,P1 ;GET X
MOV A,@A+DPTR ;GET X SQAURE FROM TABLE
MOV P2,A ;ISSUE IT TO P2
SJMP BACK ;KEEP DOING IT

ORG 300H
XSQR_TABLE:

DB 0,1,4,9,16,25,36,49,64,81
END

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

ACCESSING
MEMORY

Indexed
Addressing
Mode and

MOVX

In many applications, the size of
program code does not leave any
room to share the 64K-byte code
space with data

The 8051 has another 64K bytes of
memory space set aside exclusively for
data storage

This data memory space is referred to as
external memory and it is accessed only by the
MOVX instruction

The 8051 has a total of 128K bytes of
memory space

64K bytes of code and 64K bytes of data
The data space cannot be shared between
code and data

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

ACCESSING
MEMORY

RAM Locations
30 – 7FH as
Scratch Pad

In many applications we use RAM
locations 30 – 7FH as scratch pad

We use R0 – R7 of bank 0
Leave addresses 8 – 1FH for stack usage
If we need more registers, we simply use
RAM locations 30 – 7FH

Example 5-10
Write a program to toggle P1 a total of 200 times. Use RAM
location 32H to hold your counter value instead of registers R0 –
R7

Solution:
MOV P1,#55H ;P1=55H
MOV 32H,#200 ;load counter value

;into RAM loc 32H
LOP1: CPL P1 ;toggle P1

ACALL DELAY
DJNZ 32H,LOP1 ;repeat 200 times

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

BIT
ADDRESSES

Many microprocessors allow program
to access registers and I/O ports in
byte size only

However, in many applications we need to
check a single bit

One unique and powerful feature of
the 8051 is single-bit operation

Single-bit instructions allow the
programmer to set, clear, move, and
complement individual bits of a port,
memory, or register
It is registers, RAM, and I/O ports that
need to be bit-addressable

ROM, holding program code for execution, is
not bit-addressable

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

BIT
ADDRESSES

Bit-
Addressable

RAM

The bit-addressable RAM location are
20H to 2FH

These 16 bytes provide 128 bits of RAM
bit-addressability, since 16 × 8 = 128

0 to 127 (in decimal) or 00 to 7FH
The first byte of internal RAM location 20H
has bit address 0 to 7H
The last byte of 2FH has bit address 78H
to 7FH

Internal RAM locations 20-2FH are
both byte-addressable and bit-
addressable

Bit address 00-7FH belong to RAM byte
addresses 20-2FH
Bit address 80-F7H belong to SFR P0,
P1, …

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

Default register bank for R0-R707
00

Bank 10F
08

Bank 217
10

Bank 31F
18

000102030405060720

08090A0B0C0D0E0F21

101112131415161722

18191A1B1C1D1E1F23

202122232425262724

28292A2B2C2D2E2F25

303132333435363726

38393A3B3C3D3E3F27

404142434445464728

48494A4B4C4D4E4F29

50515253545556572A

58595A5B5C5D5E5F2B

60616263646566672C

68696A6B6C6D6E6F2D

70717273747576772E

78797A7B7C7D7E7F2F

General purpose RAM
7F

30

Byte address

Bit-addressable
locations

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

Example 5-11
Find out to which by each of the following bits belongs. Give the

address of the RAM byte in hex
(a) SETB 42H, (b) CLR 67H, (c) CLR 0FH
(d) SETB 28H, (e) CLR 12, (f) SETB 05

Solution:

(a) D2 of RAM location 28H

(b) D7 of RAM location 2CH

(c) D7 of RAM location 21H

(d) D0 of RAM location 25H

(e) D4 of RAM location 21H

(f) D5 of RAM location 20H

D0D1D2D3D4D5D6D7

000102030405060720

08090A0B0C0D0E0F21

101112131415161722

18191A1B1C1D1E1F23

202122232425262724

28292A2B2C2D2E2F25

303132333435363726

38393A3B3C3D3E3F27

404142434445464728

48494A4B4C4D4E4F29

50515253545556572A

58595A5B5C5D5E5F2B

60616263646566672C

68696A6B6C6D6E6F2D

70717273747576772E

78797A7B7C7D7E7F2F

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

To avoid confusion regarding the
addresses 00 – 7FH

The 128 bytes of RAM have the byte
addresses of 00 – 7FH can be accessed in
byte size using various addressing modes

Direct and register-indirect

The 16 bytes of RAM locations 20 – 2FH
have bit address of 00 – 7FH

We can use only the single-bit instructions and
these instructions use only direct addressing
mode

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

Instructions that are used for signal-bit
operations are as following

Jump to target if bit = 1, clear bit
(jump if bit, then clear)

JBC bit, target
Jump to target if bit = 0 (jump if no bit)JNB bit, target
Jump to target if bit = 1 (jump if bit)JB bit, target
Complement the bit (bit = NOT bit)CPL bit
Clear the bit (bit = 0)CLR bit

Set the bit (bit = 1)SETB bit

FunctionInstruction

Single-Bit Instructions

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

BIT
ADDRESSES

I/O Port
Bit Addresses

While all of the SFR registers are byte-
addressable, some of them are also bit-
addressable

The P0 – P3 are bit addressable
We can access either the entire 8 bits
or any single bit of I/O ports P0, P1, P2,
and P3 without altering the rest
When accessing a port in a single-bit
manner, we use the syntax SETB X.Y

X is the port number P0, P1, P2, or P3
Y is the desired bit number from 0 to 7 for
data bits D0 to D7
ex. SETB P1.5 sets bit 5 of port 1 high

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

BIT
ADDRESSES

I/O Port
Bit Addresses

(cont’)

Notice that when code such as
SETB P1.0 is assembled, it becomes
SETB 90H

The bit address for I/O ports
P0 are 80H to 87H
P1 are 90H to 97H
P2 are A0H to A7H
P3 are B0H to B7H

P2.7 (A7)
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0 (A0)

P2

P3.7 (B7)
P3.6
P3.5
P3.4
P3.3
P3.2
P3.1
P3.0 (B0)

P3

P1.7 (97)
P1.6
P1.5
P1.4
P1.3
P1.2
P1.1
P1.0 (90)

P1

P0.7 (87)
P0.6
P0.5
P0.4
P0.3
P0.2
P0.1
P0.0 (80)

P0

D7
D6
D5
D4
D3
D2
D1
D0

Port Bit

Single-Bit Addressability of Ports

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

BIT
ADDRESSES

I/O Port
Bit Addresses

(cont’)

Special Function Register

Byte
address

SFR RAM Address (Byte and Bit)

99

A0

A8

B0

B8

D0

E0

F0

FF

SBUF

P2

IE

P3

IP

PSW

ACC

B

not bit addressable

A7 A6 A5 A4 A3 A2 A1 A0

AF AE AD AC AB AA A9 A8

B7 B6 B5 B4 B3 B2 B1 B0

-- -- -- BC BB BA B9 B8

D7 D6 D5 D4 D3 D2 D1 D0

E7 E6 E5 E4 E3 E2 E1 E0

F7 F6 F5 F4 F3 F2 F1 F0

Bit address

DPLnot bit addressable82

SPnot bit addressable81

80

83

87

88

89

8A

8B

8C

8D

90

98

P0

DPH

PCON

TCON

TMOD

TL0

TL1

TH0

TH1

P1

SCON

87 86 85 84 83 82 81 80

not bit addressable

not bit addressable

8F 8E 8D 8C 8B 8A 89 88

not bit addressable

not bit addressable

not bit addressable

not bit addressable

not bit addressable

97 96 95 94 93 92 91 90

9F 9E 9D 9C 9B 9A 99 98

Bit address
Byte
address

Bit addresses 80 – F7H
belong to SFR of P0,
TCON, P1, SCON, P2, etc

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

BIT
ADDRESSES

Registers
Bit-

Addressability

Only registers A, B, PSW, IP, IE, ACC,
SCON, and TCON are bit-addressable

While all I/O ports are bit-addressable

In PSW register, two bits are set aside
for the selection of the register banks

Upon RESET, bank 0 is selected
We can select any other banks using the
bit-addressability of the PSW

P--OVRS0RS1--ACCY

18H - 1FH311
10H - 17H201
08H - 0FH110
00H - 07H000
AddressRegister BankRS0RS1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

BIT
ADDRESSES

Registers
Bit-

Addressability
(cont’)

Example 5-13
Write a program to save the accumulator in R7 of bank 2.
Solution:

CLR PSW.3
SETB PSW.4
MOV R7,A

Example 5-14
While there are instructions such as JNC and JC to check the carry flag
bit (CY), there are no such instructions for the overflow flag bit (OV).
How would you write code to check OV?
Solution:

JB PSW.2,TARGET ;jump if OV=1

P--OVRS0RS1--ACCY

Example 5-18
While a program to save the status of bit P1.7 on RAM address bit 05.
Solution:

MOV C,P1.7

MOV 05,C

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

BIT
ADDRESSES

Registers
Bit-

Addressability
(cont’) Example 5-17

The status of bits P1.2 and P1.3 of I/O port P1 must be saved before
they are changed. Write a program to save the status of P1.2 in bit
location 06 and the status of P1.3 in bit location 07
Solution:

CLR 06 ;clear bit addr. 06
CLR 07 ;clear bit addr. 07
JNB P1.2,OVER ;check P1.2, if 0 then jump
SETB 06 ;if P1.2=1,set bit 06 to 1

OVER: JNB P1.3,NEXT ;check P1.3, if 0 then jump
SETB 07 ;if P1.3=1,set bit 07 to 1

NEXT: ...

Example 5-15
Write a program to see if the RAM location 37H contains an even
value. If so, send it to P2. If not, make it even and then send it to P2.
Solution:

MOV A,37H ;load RAM 37H into ACC
JNB ACC.0,YES ;if D0 of ACC 0? If so jump
INC A ;it’s odd, make it even

YES: MOV P2,A ;send it to P2

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

BIT
ADDRESSES

Using BIT

The BIT directive is a widely used
directive to assign the bit-addressable
I/O and RAM locations

Allow a program to assign the I/O or RAM
bit at the beginning of the program,
making it easier to modify them

Example 5-22
A switch is connected to pin P1.7 and an LED to pin P2.0. Write a
program to get the status of the switch and send it to the LED.

Solution:
LED BIT P1.7 ;assign bit
SW BIT P2.0 ;assign bit
HERE: MOV C,SW ;get the bit from the port

MOV LED,C ;send the bit to the port
SJMP HERE ;repeat forever

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

BIT
ADDRESSES

Using BIT
(cont’)

Example 5-20
Assume that bit P2.3 is an input and represents the condition of an
oven. If it goes high, it means that the oven is hot. Monitor the bit
continuously. Whenever it goes high, send a high-to-low pulse to port
P1.5 to turn on a buzzer.

Solution:
OVEN_HOT BIT P2.3
BUZZER BIT P1.5
HERE: JNB OVEN_HOT,HERE ;keep monitoring

ACALL DELAY
CPL BUZZER ;sound the buzzer
ACALL DELAY
SJMP HERE

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

BIT
ADDRESSES

Using EQU

Use the EQU to assign addresses
Defined by names, like P1.7 or P2
Defined by addresses, like 97H or 0A0H

Example 5-24
A switch is connected to pin P1.7. Write a program to check the status
of the switch and make the following decision.
(a) If SW = 0, send “0” to P2
(b) If SW = 1, send “1“ to P2

Solution:
SW EQU P1.7
MYDATA EQU P2
HERE: MOV C,SW

JC OVER
MOV MYDATA,#’0’
SJMP HERE

OVER: MOV MYDATA,#’1’
SJMP HERE
END

SW EQU 97H
MYDATA EQU 0A0H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

EXTRA 128
BYTE ON-CHIP
RAM IN 8052

The 8052 has another 128 bytes of on-
chip RAM with addresses 80 – FFH

It is often called upper memory
Use indirect addressing mode, which uses R0
and R1 registers as pointers with values of 80H
or higher
– MOV @R0, A and MOV @R1, A

The same address space assigned to the
SFRs

Use direct addressing mode
– MOV 90H, #55H is the same as
MOV P1, #55H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 38HANEL

EXTRA 128
BYTE ON-CHIP
RAM IN 8052

(cont’)

Example 5-27
Assume that the on-chip ROM has a message. Write a program to
copy it from code space into the upper memory space starting at
address 80H. Also, as you place a byte in upper RAM, give a copy to
P0.

Solution:
ORG 0
MOV DPTR,#MYDATA
MOV R1,#80H ;access the upper memory

B1: CLR A
MOVC A,@A+DPTR ;copy from code ROM
MOV @R1,A ;store in upper memory
MOV P0,A ;give a copy to P0
JZ EXIT ;exit if last byte
INC DPTR ;increment DPTR
INC R1 ;increment R1
SJMP B1 ;repeat until last byte

EXIT: SJMP $;stay here when finished
;---------------

ORG 300H
MYDATA: DB “The Promise of World Peace”,0

END

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

ARITHMETIC & LOGIC
INSTRUCTIONS AND

PROGRAMS

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

ARITHMETIC
INSTRUCTIONS

Addition of
Unsigned
Numbers

ADD A,source ;A = A + source

The instruction ADD is used to add two
operands

Destination operand is always in register A
Source operand can be a register,
immediate data, or in memory
Memory-to-memory arithmetic operations
are never allowed in 8051 Assembly
language

Show how the flag register is affected by the following instruction.

MOV A,#0F5H ;A=F5 hex
ADD A,#0BH ;A=F5+0B=00

Solution:
F5H 1111 0101

+ 0BH + 0000 1011
100H 0000 0000

CY =1, since there is a
carry out from D7
PF =1, because the number
of 1s is zero (an even
number), PF is set to 1.
AC =1, since there is a
carry from D3 to D4

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

ARITHMETIC
INSTRUCTIONS

Addition of
Individual

Bytes

Assume that RAM locations 40 – 44H have the following values.
Write a program to find the sum of the values. At the end of the
program, register A should contain the low byte and R7 the high byte.

40 = (7D)
41 = (EB)
42 = (C5)
43 = (5B)
44 = (30)

Solution:

MOV R0,#40H ;load pointer
MOV R2,#5 ;load counter
CLR A ;A=0
MOV R7,A ;clear R7

AGAIN: ADD A,@R0 ;add the byte ptr to by R0
JNC NEXT ;if CY=0 don’t add carry
INC R7 ;keep track of carry

NEXT: INC R0 ;increment pointer
DJNZ R2,AGAIN ;repeat until R2 is zero

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

ARITHMETIC
INSTRUCTIONS

ADDC and
Addition of 16-
Bit Numbers

When adding two 16-bit data operands,
the propagation of a carry from lower
byte to higher byte is concerned

Write a program to add two 16-bit numbers. Place the sum in R7 and
R6; R6 should have the lower byte.

Solution:
CLR C ;make CY=0
MOV A, #0E7H ;load the low byte now A=E7H
ADD A, #8DH ;add the low byte
MOV R6, A ;save the low byte sum in R6
MOV A, #3CH ;load the high byte
ADDC A, #3BH ;add with the carry
MOV R7, A ;save the high byte sum

When the first byte is added
(E7+8D=74, CY=1).
The carry is propagated to the
higher byte, which result in 3C
+ 3B + 1 =78 (all in hex)

1
3C E7

+ 3B 8D
78 74

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

ARITHMETIC
INSTRUCTIONS

BCD Number
System

The binary representation of the digits
0 to 9 is called BCD (Binary Coded
Decimal) Digit BCD

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Unpacked BCD
In unpacked BCD, the lower 4
bits of the number represent the
BCD number, and the rest of the
bits are 0
Ex. 00001001 and 00000101 are
unpacked BCD for 9 and 5

Packed BCD
In packed BCD, a single byte has
two BCD number in it, one in the
lower 4 bits, and one in the
upper 4 bits
Ex. 0101 1001 is packed BCD for
59H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

ARITHMETIC
INSTRUCTIONS

Unpacked and
Packed BCD

Adding two BCD numbers must give a
BCD result

MOV A, #17H
ADD A, #28H

The result above should have been 17 + 28 = 45 (0100 0101).
To correct this problem, the programmer must add 6 (0110) to the
low digit: 3F + 06 = 45H.

Adding these two
numbers gives
0011 1111B (3FH),
Which is not BCD!

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

ARITHMETIC
INSTRUCTIONS

DA Instruction

DA A ;decimal adjust for addition

The DA instruction is provided to
correct the aforementioned problem
associated with BCD addition

The DA instruction will add 6 to the lower
nibble or higher nibble if need

Example:

MOV A,#47H ;A=47H first BCD operand
MOV B,#25H ;B=25H second BCD operand
ADD A,B ;hex(binary) addition(A=6CH)
DA A ;adjust for BCD addition

(A=72H)

The “DA” instruction works only on A. In other word, while the source
can be an operand of any addressing mode, the destination must be in
register A in order for DA to work.

DA works only
after an ADD,
but not after INC

6CH

72H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

ARITHMETIC
INSTRUCTIONS

DA Instruction
(cont’)

Summary of DA instruction
After an ADD or ADDC instruction
1. If the lower nibble (4 bits) is greater than 9, or

if AC=1, add 0110 to the lower 4 bits
2. If the upper nibble is greater than 9, or if

CY=1, add 0110 to the upper 4 bits

Example:
HEX BCD
29 0010 1001

+ 18 + 0001 1000
41 0100 0001 AC=1

+ 6 + 0110
47 0100 0111

Since AC=1 after the
addition, ”DA A” will add 6 to the
lower nibble.
The final result is in BCD format.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

ARITHMETIC
INSTRUCTIONS

DA Instruction
(cont’)

Assume that 5 BCD data items are stored in RAM locations starting
at 40H, as shown below. Write a program to find the sum of all the
numbers. The result must be in BCD.

40=(71)
41=(11)
42=(65)
43=(59)
44=(37)

Solution:
MOV R0,#40H ;Load pointer
MOV R2,#5 ;Load counter
CLR A ;A=0
MOV R7,A ;Clear R7

AGAIN: ADD A,@R0 ;add the byte pointer
;to by R0

DA A ;adjust for BCD
JNC NEXT ;if CY=0 don’t

;accumulate carry
INC R7 ;keep track of carries

NEXT: INC R0 ;increment pointer
DJNZ R2,AGAIN ;repeat until R2 is 0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

ARITHMETIC
INSTRUCTIONS

Subtraction of
Unsigned
Numbers

In many microprocessor there are two
different instructions for subtraction:
SUB and SUBB (subtract with borrow)

In the 8051 we have only SUBB
The 8051 uses adder circuitry to perform
the subtraction

SUBB A,source ;A = A – source – CY

To make SUB out of SUBB, we have to
make CY=0 prior to the execution of
the instruction

Notice that we use the CY flag for the
borrow

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

ARITHMETIC
INSTRUCTIONS

Subtraction of
Unsigned
Numbers

(cont’)

SUBB when CY = 0
1. Take the 2’s complement of the

subtrahend (source operand)
2. Add it to the minuend (A)
3. Invert the carry

CLR C
MOV A,#4C ;load A with value 4CH
SUBB A,#6EH ;subtract 6E from A
JNC NEXT ;if CY=0 jump to NEXT
CPL A ;if CY=1, take 1’s complement
INC A ;and increment to get 2’s comp

NEXT: MOV R1,A ;save A in R1

Solution:
4C 0100 1100 0100 1100

- 6E 0110 1110 1001 0010
-22 01101 1110

CY =1

+

2’s
complement

Invert carry

CY=0, the result is positive;
CY=1, the result is negative
and the destination has the
2’s complement of the result

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

ARITHMETIC
INSTRUCTIONS

Subtraction of
Unsigned
Numbers

(cont’)

SUBB when CY = 1
This instruction is used for multi-byte
numbers and will take care of the borrow
of the lower operand

CLR C
MOV A,#62H ;A=62H
SUBB A,#96H ;62H-96H=CCH with CY=1
MOV R7,A ;save the result
MOV A,#27H ;A=27H
SUBB A,#12H ;27H-12H-1=14H
MOV R6,A ;save the result

Solution:

We have 2762H - 1296H = 14CCH.

A = 62H – 96H – 0 = CCH
CY = 1

A = 27H - 12H - 1 = 14H
CY = 0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

ARITHMETIC
INSTRUCTIONS

Unsigned
Multiplication

The 8051 supports byte by byte
multiplication only

The byte are assumed to be unsigned data
MUL AB ;AxB, 16-bit result in B, A

MOV A,#25H ;load 25H to reg. A
MOV B,#65H ;load 65H to reg. B
MUL AB ;25H * 65H = E99 where

;B = OEH and A = 99H

Multiplication Operand1 Operand2 Result
Byte x byte A B B = high byte

A = low byte

Unsigned Multiplication Summary (MUL AB)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

ARITHMETIC
INSTRUCTIONS

Unsigned
Division

The 8051 supports byte over byte
division only

The byte are assumed to be unsigned data
DIV AB ;divide A by B, A/B

MOV A,#95 ;load 95 to reg. A
MOV B,#10 ;load 10 to reg. B
MUL AB ;A = 09(quotient) and

;B = 05(remainder)

Division Numerator Denominator Quotient Remainder
Byte / byte A B A B

Unsigned Division Summary (DIV AB)

CY is always 0
If B ≠ 0, OV = 0
If B = 0, OV = 1 indicates error

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

ARITHMETIC
INSTRUCTIONS

Application for
DIV

(a) Write a program to get hex data in the range of 00 – FFH from
port 1 and convert it to decimal. Save it in R7, R6 and R5.
(b) Assuming that P1 has a value of FDH for data, analyze program.

Solution:
(a)

MOV A,#0FFH
MOV P1,A ;make P1 an input port
MOV A,P1 ;read data from P1
MOV B,#10 ;B=0A hex
DIV AB ;divide by 10
MOV R7,B ;save lower digit
MOV B,#10
DIV AB ;divide by 10 once more
MOV R6,B ;save the next digit
MOV R5,A ;save the last digit

(b) To convert a binary (hex) value to decimal, we divide it by 10
repeatedly until the quotient is less than 10. After each division the
remainder is saves.

Q R
FD/0A = 19 3 (low digit)
19/0A = 2 5 (middle digit)

2 (high digit)
Therefore, we have FDH=253.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

Signed 8-bit
Operands

D7 (MSB) is the sign and D0 to D6 are
the magnitude of the number

If D7=0, the operand is positive, and if
D7=1, it is negative

Positive numbers are 0 to +127
Negative number representation (2’s
complement)

1. Write the magnitude of the number in 8-bit
binary (no sign)

2. Invert each bit
3. Add 1 to it

Sign Magnitude

D7 D6 D5 D4 D3 D2 D1 D0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

Signed 8-bit
Operands

(cont’)

Show how the 8051 would represent -34H

Solution:
1. 0011 0100 34H given in binary

2. 1100 1011 invert each bit
3. 1100 1100 add 1 (which is CC in hex)

Signed number representation of -34 in 2’s complement is CCH

Decimal Binary Hex

-128 1000 0000 80
-127 1000 0001 81
-126 1000 0010 82
...
-2 1111 1110 FE
-1 1111 1111 FF
0 0000 0000 00
+1 0000 0001 01
+2 0000 0010 02
...
+127 0111 1111 7F

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

Overflow
Problem

Examine the following code and analyze the result.

MOV A,#+96 ;A=0110 0000 (A=60H)
MOV R1,#+70 ;R1=0100 0110(R1=46H)
ADD A,R1 ;A=1010 0110

;A=A6H=-90,INVALID
Solution:

+96 0110 0000

+ +70 0100 0110
+ 166 1010 0110 and OV =1

According to the CPU, the result is -90, which is wrong. The CPU
sets OV=1 to indicate the overflow

If the result of an operation on signed
numbers is too large for the register

An overflow has occurred and the
programmer must be noticed

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

OV Flag

In 8-bit signed number operations,
OV is set to 1 if either occurs:

1. There is a carry from D6 to D7, but no
carry out of D7 (CY=0)

2. There is a carry from D7 out (CY=1), but
no carry from D6 to D7

MOV A,#-128 ;A=1000 0000(A=80H)

MOV R4,#-2 ;R4=1111 1110(R4=FEH)
ADD A,R4 ;A=0111 1110(A=7EH=+126,INVALID)

-128 1000 0000

+ -2 1111 1110
-130 0111 1110 and OV=1

OV = 1
The result +126 is wrong

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

OV Flag
(cont’)

MOV A,#-2 ;A=1111 1110(A=FEH)
MOV R1,#-5 ;R1=1111 1011(R1=FBH)
ADD A,R1 ;A=1111 1001(A=F9H=-7,

;Correct, OV=0)
-2 1111 1110

+ -5 1111 1011
-7 1111 1001 and OV=0

OV = 0
The result -7 is correct

MOV A,#+7 ;A=0000 0111(A=07H)
MOV R1,#+18 ;R1=0001 0010(R1=12H)
ADD A,R1 ;A=0001 1001(A=19H=+25,

;Correct,OV=0)
7 0000 0111

+ 18 0001 0010
25 0001 1001 and OV=0

OV = 0
The result +25 is correct

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

OV Flag
(cont’)

In unsigned number addition, we must
monitor the status of CY (carry)

Use JNC or JC instructions

In signed number addition, the OV
(overflow) flag must be monitored by
the programmer

JB PSW.2 or JNB PSW.2

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

SIGNED
ARITHMETIC

INSTRUCTIONS

2's
Complement

To make the 2’s complement of a
number

CPL A ;1’s complement (invert)
ADD A,#1 ;add 1 to make 2’s comp.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

AND

ANL destination,source
;dest = dest AND source

This instruction will perform a logic
AND on the two operands and place
the result in the destination

The destination is normally the
accumulator
The source operand can be a register, in
memory, or immediate

X Y X AND Y

0 0 0

0 1 0

1 0 0

1 1 1

Show the results of the following.

MOV A,#35H ;A = 35H
ANL A,#0FH ;A = A AND 0FH

35H 0 0 1 1 0 1 0 1
0FH 0 0 0 0 1 1 1 1
05H 0 0 0 0 0 1 0 1

ANL is often used to
mask (set to 0) certain
bits of an operand

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

OR

ORL destination,source
;dest = dest OR source

The destination and source operands
are ORed and the result is placed in
the destination

The destination is normally the
accumulator
The source operand can be a register, in
memory, or immediate

X Y X OR Y

0 0 0

0 1 1

1 0 1

1 1 1

Show the results of the following.

MOV A,#04H ;A = 04
ORL A,#68H ;A = 6C

04H 0 0 0 0 0 1 0 0
68H 0 1 1 0 1 0 0 0
6CH 0 1 1 0 1 1 0 0

ORL instruction can be
used to set certain bits
of an operand to 1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

XOR

XRL destination,source
;dest = dest XOR source

This instruction will perform XOR
operation on the two operands and
place the result in the destination

The destination is normally the
accumulator
The source operand can be a register, in
memory, or immediate

Show the results of the following.

MOV A,#54H
XRL A,#78H

54H 0 1 0 1 0 1 0 0
78H 0 1 1 1 1 0 0 0
2CH 0 0 1 0 1 1 0 0

X Y X XOR Y

0 0 0

0 1 1

1 0 1

1 1 0

XRL instruction can be
used to toggle certain
bits of an operand

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

XOR
(cont’)

The XRL instruction can be used to clear the contents of a register by
XORing it with itself. Show how XRL A,A clears A, assuming that
AH = 45H.

45H 0 1 0 0 0 1 0 1
45H 0 1 0 0 0 1 0 1
00H 0 0 0 0 0 0 0 0

Read and test P1 to see whether it has the value 45H. If it does, send
99H to P2; otherwise, it stays cleared.

Solution:
MOV P2,#00 ;clear P2
MOV P1,#0FFH ;make P1 an input port
MOV R3,#45H ;R3=45H
MOV A,P1 ;read P1
XRL A,R3
JNZ EXIT ;jump if A is not 0
MOV P2,#99H

EXIT: ...

XRL can be used to
see if two registers
have the same value

If both registers have the same
value, 00 is placed in A. JNZ
and JZ test the contents of the
accumulator.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

Complement
Accumulator

CPL A ;complements the register A

This is called 1’s complement

To get the 2’s complement, all we
have to do is to to add 1 to the 1’s
complement

MOV A, #55H
CPL A ;now A=AAH

;0101 0101(55H)
;becomes 1010 1010(AAH)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

Compare
Instruction

CJNE destination,source,rel. addr.

The actions of comparing and jumping
are combined into a single instruction
called CJNE (compare and jump if not
equal)

The CJNE instruction compares two
operands, and jumps if they are not equal
The destination operand can be in the
accumulator or in one of the Rn registers
The source operand can be in a register, in
memory, or immediate

The operands themselves remain unchanged

It changes the CY flag to indicate if the
destination operand is larger or smaller

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

Compare
Instruction

(cont’)

Notice in the CJNE instruction that any
Rn register can be compared with an
immediate value

There is no need for register A to be
involved

CJNE R5,#80,NOT_EQUAL ;check R5 for 80
... ;R5 = 80

NOT_EQUAL:
JNC NEXT ;jump if R5 > 80
... ;R5 < 80

NEXT: ...

Compare Carry Flag
destination ≥ source CY = 0

destination < source CY = 1
CY flag is always
checked for cases
of greater or less
than, but only after
it is determined that
they are not equal

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

LOGIC AND
COMPARE

INSTRUCTIONS

Compare
Instruction

(cont’)

The compare instruction is really a
subtraction, except that the operands
remain unchanged

Flags are changed according to the
execution of the SUBB instruction

Write a program to read the temperature and test it for the value 75.
According to the test results, place the temperature value into the
registers indicated by the following.

If T = 75 then A = 75
If T < 75 then R1 = T
If T > 75 then R2 = T

Solution:
MOV P1,#0FFH ;make P1 an input port
MOV A,P1 ;read P1 port
CJNE A,#75,OVER ;jump if A is not 75
SJMP EXIT ;A=75, exit

OVER: JNC NEXT ;if CY=0 then A>75
MOV R1,A ;CY=1, A<75, save in R1
SJMP EXIT ; and exit

NEXT: MOV R2,A ;A>75, save it in R2
EXIT: ...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Rotating Right
and Left

RR A ;rotate right A

In rotate right
The 8 bits of the accumulator are rotated
right one bit, and
Bit D0 exits from the LSB and enters into
MSB, D7

MSB LSB

MOV A,#36H ;A = 0011 0110
RR A ;A = 0001 1011
RR A ;A = 1000 1101
RR A ;A = 1100 0110
RR A ;A = 0110 0011

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Rotating Right
and Left

(cont’)

RL A ;rotate left A

In rotate left
The 8 bits of the accumulator are rotated
left one bit, and
Bit D7 exits from the MSB and enters into
LSB, D0

MSB LSB

MOV A,#72H ;A = 0111 0010
RL A ;A = 1110 0100
RL A ;A = 1100 1001

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Rotating
through Carry

RRC A ;rotate right through carry

In RRC A
Bits are rotated from left to right
They exit the LSB to the carry flag, and
the carry flag enters the MSB

MSB LSB

CLR C ;make CY = 0
MOV A,#26H ;A = 0010 0110
RRC A ;A = 0001 0011 CY = 0
RRC A ;A = 0000 1001 CY = 1
RRC A ;A = 1000 0100 CY = 1

CY

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Rotating
through Carry

(cont’)

RLC A ;rotate left through carry

In RLC A
Bits are shifted from right to left
They exit the MSB and enter the carry flag,
and the carry flag enters the LSB

MSB LSBCY

Write a program that finds the number of 1s in a given byte.
MOV R1,#0
MOV R7,#8 ;count=08
MOV A,#97H

AGAIN: RLC A
JNC NEXT ;check for CY
INC R1 ;if CY=1 add to count

NEXT: DJNZ R7,AGAIN

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Serializing Data

Serializing data is a way of sending a
byte of data one bit at a time through
a single pin of microcontroller

Using the serial port, discussed in Chapter
10
To transfer data one bit at a time and
control the sequence of data and spaces
in between them

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Serializing Data
(cont’)

Transfer a byte of data serially by
Moving CY to any pin of ports P0 – P3
Using rotate instruction

Write a program to transfer value 41H serially (one bit at a time)
via pin P2.1. Put two highs at the start and end of the data. Send the
byte LSB first.

Solution:
MOV A,#41H
SETB P2.1 ;high
SETB P2.1 ;high
MOV R5,#8

AGAIN: RRC A
MOV P2.1,C ;send CY to P2.1
DJNZ R5,HERE
SETB P2.1 ;high
SETB P2.1 ;high

P2.1CYRegister A
D7 D0

Pin

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Serializing Data
(cont’)

Write a program to bring in a byte of data serially one bit at a time
via pin P2.7 and save it in register R2. The byte comes in with the
LSB first.

Solution:
MOV R5,#8

AGAIN: MOV C,P2.7 ;bring in bit
RRC A
DJNZ R5,HERE
MOV R2,A ;save it

P2.7 CY Register A
D7 D0

Pin

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 38HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Single-bit
Operations with

CY

There are several instructions by which
the CY flag can be manipulated directly

Instruction Function
SETB C Make CY = 1
CLR C Clear carry bit (CY = 0)
CPL C Complement carry bit
MOV b,C Copy carry status to bit location (CY = b)
MOV C,b Copy bit location status to carry (b = CY)
JNC target Jump to target if CY = 0
JC target Jump to target if CY = 1
ANL C,bit AND CY with bit and save it on CY
ANL C,/bit AND CY with inverted bit and save it on CY
ORL C,bit OR CY with bit and save it on CY
ORL C,/bit OR CY with inverted bit and save it on CY

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 39HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

Single-bit
Operations with

CY
(cont’)

Assume that bit P2.2 is used to control an outdoor light and bit P2.5
a light inside a building. Show how to turn on the outside light and
turn off the inside one.

Solution:
SETB C ;CY = 1
ORL C,P2.2 ;CY = P2.2 ORed w/ CY
MOV P2.2,C ;turn it on if not on
CLR C ;CY = 0
ANL C,P2.5 ;CY = P2.5 ANDed w/ CY
MOV P2.5,C ;turn it off if not off

Write a program that finds the number of 1s in a given byte.

Solution:
MOV R1,#0 ;R1 keeps number of 1s
MOV R7,#8 ;counter, rotate 8 times
MOV A,#97H ;find number of 1s in 97H

AGAIN: RLC A ;rotate it thru CY
JNC NEXT ;check CY
INC R1 ;if CY=1, inc count

NEXT: DJNZ R7,AGAIN ;go thru 8 times

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 40HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

SWAP

SWAP A

It swaps the lower nibble and the
higher nibble

In other words, the lower 4 bits are put
into the higher 4 bits and the higher 4 bits
are put into the lower 4 bits

SWAP works only on the accumulator
(A)

D7-D4before :

after : D3-D0

D3-D0

D7-D4

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 41HANEL

ROTATE
INSTRUCTION

AND DATA
SERIALIZATION

SWAP
(cont’)

(a) Find the contents of register A in the following code.
(b) In the absence of a SWAP instruction, how would you

exchange the nibbles? Write a simple program to show the
process.

Solution:
(a)

MOV A,#72H ;A = 72H
SWAP A ;A = 27H

(b)
MOV A,#72H ;A = 0111 0010
RL A ;A = 0111 0010
RL A ;A = 0111 0010
RL A ;A = 0111 0010
RL A ;A = 0111 0010

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 42HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Key ASCII (hex) Binary BCD (unpacked)

0 30 011 0000 0000 0000

1 31 011 0001 0000 0001

2 32 011 0010 0000 0010

3 33 011 0011 0000 0011

4 34 011 0100 0000 0100

5 35 011 0101 0000 0101

6 36 011 0110 0000 0110

7 37 011 0111 0000 0111

8 38 011 1000 0000 1000

9 39 011 1001 0000 1001

ASCII code and BCD for digits 0 - 9

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 43HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Packed BCD to
ACSII

Conversion

The DS5000T microcontrollers have a
real-time clock (RTC)

The RTC provides the time of day (hour,
minute, second) and the date (year,
month, day) continuously, regardless of
whether the power is on or off

However this data is provided in
packed BCD

To be displayed on an LCD or printed by
the printer, it must be in ACSII format

Packed BCD Unpacked BCD ASCII

29H 02H & 09H 32H & 39H
0010 1001 0000 0010 & 0011 0010 &

0000 1001 0011 1001

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 44HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

ASCII to
Packed BCD
Conversion

To convert ASCII to packed BCD
It is first converted to unpacked BCD (to
get rid of the 3)
Combined to make packed BCD

key ASCII Unpacked BCD Packed BCD

4 34 0000 0100
7 37 0000 0111 0100 0111 or 47H

MOV A, #’4’ ;A=34H, hex for ‘4’
MOV R1,#’7’ ;R1=37H,hex for ‘7’
ANL A, #0FH ;mask upper nibble (A=04)
ANL R1,#0FH ;mask upper nibble (R1=07)
SWAP A ;A=40H
ORL A, R1 ;A=47H, packed BCD

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 45HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

ASCII to
Packed BCD
Conversion

(cont’)

Assume that register A has packed BCD, write a program to convert
packed BCD to two ASCII numbers and place them in R2 and R6.

MOV A,#29H ;A=29H, packed BCD
MOV R2,A ;keep a copy of BCD data
ANL A,#0FH ;mask the upper nibble (A=09)
ORL A,#30H ;make it an ASCII, A=39H(‘9’)
MOV R6,A ;save it
MOV A,R2 ;A=29H, get the original
data
ANL A,#0F0H ;mask the lower nibble
RR A ;rotate right
RR A ;rotate right
RR A ;rotate right
RR A ;rotate right
ORL A,#30H ;A=32H, ASCII char. ’2’
MOV R2,A ;save ASCII char in R2

SWAP A

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 46HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Using a Look-
up Table for

ASCII

Assume that the lower three bits of P1 are connected to three
switches. Write a program to send the following ASCII characters
to P2 based on the status of the switches.

000 ‘0’
001 ‘1’
010 ‘2’
011 ‘3’
100 ‘4’
101 ‘5’
110 ‘6’
111 ‘7’

Solution:
MOV DPTR,#MYTABLE
MOV A,P1 ;get SW status
ANL A,#07H ;mask all but lower 3
MOVC A,@A+DPTR ;get data from table
MOV P2,A ;display value
SJMP $;stay here

;------------------
ORG 400H

MYTABLE DB ‘0’,‘1’,‘2’,‘3’,‘4’,‘5’,‘6’,‘7’
END

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 47HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Checksum Byte
in ROM

To ensure the integrity of the ROM
contents, every system must perform
the checksum calculation

The process of checksum will detect any
corruption of the contents of ROM
The checksum process uses what is called
a checksum byte

The checksum byte is an extra byte that is
tagged to the end of series of bytes of data

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 48HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Checksum Byte
in ROM
(cont’)

To calculate the checksum byte of a
series of bytes of data

Add the bytes together and drop the
carries
Take the 2’s complement of the total sum,
and it becomes the last byte of the series

To perform the checksum operation,
add all the bytes, including the
checksum byte

The result must be zero
If it is not zero, one or more bytes of data
have been changed

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 49HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Checksum Byte
in ROM
(cont’)

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and
52H.(a) Find the checksum byte, (b) perform the checksum operation to
ensure data integrity, and (c) if the second byte 62H has been changed
to 22H, show how checksum detects the error.
Solution:
(a) Find the checksum byte.

25H The checksum is calculated by first adding the
+ 62H bytes. The sum is 118H, and dropping the carry,
+ 3FH we get 18H. The checksum byte is the 2’s
+ 52H complement of 18H, which is E8H

118H
(b) Perform the checksum operation to ensure data integrity.

25H
+ 62H Adding the series of bytes including the checksum
+ 3FH byte must result in zero. This indicates that all the
+ 52H bytes are unchanged and no byte is corrupted.
+ E8H

200H (dropping the carries)
(c) If the second byte 62H has been changed to 22H, show how

checksum detects the error.
25H

+ 22H Adding the series of bytes including the checksum
+ 3FH byte shows that the result is not zero, which indicates
+ 52H that one or more bytes have been corrupted.
+ E8H

1C0H (dropping the carry, we get C0H)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 50HANEL

BCD AND ASCII
APPLICATION
PROGRAMS

Binary (Hex)
to ASCII

Conversion

Many ADC (analog-to-digital converter)
chips provide output data in binary
(hex)

To display the data on an LCD or PC
screen, we need to convert it to ASCII

Convert 8-bit binary (hex) data to decimal
digits, 000 – 255
Convert the decimal digits to ASCII digits,
30H – 39H

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

8051 PROGRAMMING IN C

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

WHY
PROGRAM
8051 IN C

Compilers produce hex files that is
downloaded to ROM of microcontroller

The size of hex file is the main concern
Microcontrollers have limited on-chip ROM
Code space for 8051 is limited to 64K bytes

C programming is less time consuming,
but has larger hex file size
The reasons for writing programs in C

It is easier and less time consuming to
write in C than Assembly
C is easier to modify and update
You can use code available in function
libraries
C code is portable to other microcontroller
with little of no modification

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

DATA TYPES
A good understanding of C data types
for 8051 can help programmers to
create smaller hex files

Unsigned char
Signed char
Unsigned int
Signed int
Sbit (single bit)
Bit and sfr

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

DATA TYPES

Unsigned char

The character data type is the most
natural choice

8051 is an 8-bit microcontroller

Unsigned char is an 8-bit data type in
the range of 0 – 255 (00 – FFH)

One of the most widely used data types
for the 8051

Counter value
ASCII characters

C compilers use the signed char as the
default if we do not put the keyword
unsigned

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

DATA TYPES

Unsigned char
(cont’)

Write an 8051 C program to send values 00 – FF to port P1.

Solution:
#include <reg51.h>
void main(void)
{
unsigned char z;
for (z=0;z<=255;z++)

P1=z;
}

Write an 8051 C program to send hex values for ASCII characters of
0, 1, 2, 3, 4, 5, A, B, C, and D to port P1.

Solution:
#include <reg51.h>
void main(void)
{
unsigned char mynum[]=“012345ABCD”;
unsigned char z;
for (z=0;z<=10;z++)

P1=mynum[z];
}

1. Pay careful attention to
the size of the data

2. Try to use unsigned char
instead of int if possible

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

DATA TYPES

Unsigned char
(cont’)

Write an 8051 C program to toggle all the bits of P1 continuously.

Solution:
//Toggle P1 forever
#include <reg51.h>
void main(void)
{
for (;;)
{

p1=0x55;
p1=0xAA;

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

DATA TYPES

Signed char

The signed char is an 8-bit data type
Use the MSB D7 to represent – or +
Give us values from –128 to +127

We should stick with the unsigned char
unless the data needs to be
represented as signed numbers

temperature
Write an 8051 C program to send values of –4 to +4 to port P1.

Solution:
//Singed numbers
#include <reg51.h>
void main(void)
{
char mynum[]={+1,-1,+2,-2,+3,-3,+4,-4};
unsigned char z;
for (z=0;z<=8;z++)

P1=mynum[z];
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

DATA TYPES

Unsigned and
Signed int

The unsigned int is a 16-bit data type
Takes a value in the range of 0 to 65535
(0000 – FFFFH)
Define 16-bit variables such as memory
addresses
Set counter values of more than 256
Since registers and memory accesses are
in 8-bit chunks, the misuse of int variables
will result in a larger hex file

Signed int is a 16-bit data type
Use the MSB D15 to represent – or +
We have 15 bits for the magnitude of the
number from –32768 to +32767

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

DATA TYPES

Single Bit
(cont’)

Write an 8051 C program to toggle bit D0 of the port P1 (P1.0)
50,000 times.

Solution:
#include <reg51.h>
sbit MYBIT=P1^0;

void main(void)
{
unsigned int z;
for (z=0;z<=50000;z++)

{
MYBIT=0;
MYBIT=1;

}
}

sbit keyword allows access to the
single bits of the SFR registers

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

DATA TYPES

Bit and sfr

The bit data type allows access to
single bits of bit-addressable memory
spaces 20 – 2FH
To access the byte-size SFR registers,
we use the sfr data type

RAM addresses 80 – FFH only8-bitsfr
RAM bit-addressable only1-bitbit
SFR bit-addressable only1-bitsbit
-32768 to +3276716-bit(signed) int
0 to 6553516-bitunsigned int
-128 to +1278-bit(signed) char
0 to 2558-bitunsigned char

Data Range/UsageSize in BitsData Type

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

TIME DELAY
There are two way s to create a time
delay in 8051 C

Using the 8051 timer (Chap. 9)
Using a simple for loop
be mindful of three factors that can affect
the accuracy of the delay

The 8051 design
– The number of machine cycle
– The number of clock periods per machine

cycle
The crystal frequency connected to the X1 – X2
input pins
Compiler choice

– C compiler converts the C statements and
functions to Assembly language instructions

– Different compilers produce different code

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

TIME DELAY
(cont’)

Write an 8051 C program to toggle bits of P1 continuously forever
with some delay.

Solution:
//Toggle P1 forever with some delay in between
//“on” and “off”
#include <reg51.h>
void main(void)
{
unsigned int x;
for (;;) //repeat forever
{

p1=0x55;
for (x=0;x<40000;x++); //delay size

//unknown
p1=0xAA;
for (x=0;x<40000;x++);

}
}

We must use the oscilloscope to
measure the exact duration

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

TIME DELAY
(cont’)

Write an 8051 C program to toggle bits of P1 ports continuously with
a 250 ms.

Solution:
#include <reg51.h>
void MSDelay(unsigned int);
void main(void)
{
while (1) //repeat forever

{
p1=0x55;
MSDelay(250);
p1=0xAA;
MSDelay(250);

}
}

void MSDelay(unsigned int itime)
{
unsigned int i,j;
for (i=0;i<itime;i++)

for (j=0;j<1275;j++);
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

I/O
PROGRAMMING

Byte Size I/O

LEDs are connected to bits P1 and P2. Write an 8051 C program that
shows the count from 0 to FFH (0000 0000 to 1111 1111 in binary)
on the LEDs.

Solution:
#include <reg51.h>
#defind LED P2;

void main(void)
{
P1=00; //clear P1
LED=0; //clear P2
for (;;) //repeat forever

{
P1++; //increment P1
LED++; //increment P2

}
}

Ports P0 – P3 are byte-accessable
and we use the P0 – P3 labels as
defined in the 8051/52 header file.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

I/O
PROGRAMMING

Byte Size I/O
(cont’)

Write an 8051 C program to get a byte of data form P1, wait 1/2
second, and then send it to P2.

Solution:
#include <reg51.h>
void MSDelay(unsigned int);

void main(void)
{
unsigned char mybyte;
P1=0xFF; //make P1 input port
while (1)

{
mybyte=P1; //get a byte from P1
MSDelay(500);
P2=mybyte; //send it to P2

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

I/O
PROGRAMMING

Byte Size I/O
(cont’)

Write an 8051 C program to get a byte of data form P0. If it is less
than 100, send it to P1; otherwise, send it to P2.

Solution:
#include <reg51.h>

void main(void)
{
unsigned char mybyte;
P0=0xFF; //make P0 input port
while (1)

{
mybyte=P0; //get a byte from P0
if (mybyte<100)

P1=mybyte; //send it to P1
else

P2=mybyte; //send it to P2
}

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

I/O
PROGRAMMING

Bit-addressable
I/O

Write an 8051 C program to toggle only bit P2.4 continuously without
disturbing the rest of the bits of P2.

Solution:

//Toggling an individual bit
#include <reg51.h>
sbit mybit=P2^4;

void main(void)
{
while (1)

{
mybit=1; //turn on P2.4
mybit=0; //turn off P2.4

}
}

Ports P0 – P3 are bit-
addressable and we use
sbit data type to access
a single bit of P0 - P3

Use the Px^y format, where
x is the port 0, 1, 2, or 3 and
y is the bit 0 – 7 of that port

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

I/O
PROGRAMMING

Bit-addressable
I/O

(cont’)

Write an 8051 C program to monitor bit P1.5. If it is high, send 55H
to P0; otherwise, send AAH to P2.

Solution:

#include <reg51.h>
sbit mybit=P1^5;

void main(void)
{
mybit=1; //make mybit an input
while (1)

{
if (mybit==1)

P0=0x55;
else

P2=0xAA;
}

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

I/O
PROGRAMMING

Bit-addressable
I/O

(cont’)

A door sensor is connected to the P1.1 pin, and a buzzer is connected
to P1.7. Write an 8051 C program to monitor the door sensor, and
when it opens, sound the buzzer. You can sound the buzzer by
sending a square wave of a few hundred Hz.

Solution:
#include <reg51.h>
void MSDelay(unsigned int);
sbit Dsensor=P1^1;
sbit Buzzer=P1^7;

void main(void)
{
Dsensor=1; //make P1.1 an input
while (1)

{
while (Dsensor==1)//while it opens
{

Buzzer=0;
MSDelay(200);
Buzzer=1;
MSDelay(200);

}
}

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

I/O
PROGRAMMING

Bit-addressable
I/O

(cont’)

The data pins of an LCD are connected to P1. The information is
latched into the LCD whenever its Enable pin goes from high to low.
Write an 8051 C program to send “The Earth is but One Country” to
this LCD.

Solution:

#include <reg51.h>
#define LCDData P1 //LCDData declaration
sbit En=P2^0; //the enable pin

void main(void)
{
unsigned char message[]

=“The Earth is but One Country”;
unsigned char z;
for (z=0;z<28;z++) //send 28 characters

{
LCDData=message[z];
En=1; //a high-
En=0; //-to-low pulse to latch data

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

I/O
PROGRAMMING

Accessing SFR
Addresses
80 - FFH

Write an 8051 C program to toggle all the bits of P0, P1, and P2
continuously with a 250 ms delay. Use the sfr keyword to declare the
port addresses.

Solution:
//Accessing Ports as SFRs using sfr data type
sfr P0=0x80;
sfr P1=0x90;
sfr P2=0xA0;
void MSDelay(unsigned int);

void main(void)
{
while (1)

{
P0=0x55;
P1=0x55;
P2=0x55;
MSDelay(250);
P0=0xAA;
P1=0xAA;
P2=0xAA;
MSDelay(250);

}
}

Another way to access the SFR RAM
space 80 – FFH is to use the sfr data type

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

I/O
PROGRAMMING

Accessing SFR
Addresses
80 - FFH

(cont’)

Write an 8051 C program to turn bit P1.5 on and off 50,000 times.

Solution:

sbit MYBIT=0x95;

void main(void)
{
unsigned int z;
for (z=0;z<50000;z++)

{
MYBIT=1;
MYBIT=0;

}
}

We can access a single bit of any
SFR if we specify the bit address

Notice that there is no #include <reg51.h>.
This allows us to access any byte of the SFR RAM
space 80 – FFH. This is widely used for the new
generation of 8051 microcontrollers.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

I/O
PROGRAMMING

Using bit Data
Type for

Bit-addressable
RAM

Write an 8051 C program to get the status of bit P1.0, save it, and
send it to P2.7 continuously.

Solution:

#include <reg51.h>
sbit inbit=P1^0;
sbit outbit=P2^7;
bit membit; //use bit to declare

//bit- addressable memory

void main(void)
{
while (1)

{
membit=inbit; //get a bit from P1.0
outbit=membit; //send it to P2.7

}
}

We use bit data type to access
data in a bit-addressable section
of the data RAM space 20 – 2FH

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

LOGIC
OPERATIONS

Bit-wise
Operators in C

Logical operators
AND (&&), OR (||), and NOT (!)

Bit-wise operators
AND (&), OR (|), EX-OR (^), Inverter (~),
Shift Right (>>), and Shift Left (<<)

These operators are widely used in software
engineering for embedded systems and control

1
0
1
0
B

1
0
0
0
A&B
AND

1
1
1
0
A|B
OR

01
11

010
100
~BA^BA
InverterEX-OR

Bit-wise Logic Operators for C

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

LOGIC
OPERATIONS

Bit-wise
Operators in C

(cont’)

Run the following program on your simulator and examine the results.

Solution:

#include <reg51.h>

void main(void)
{
P0=0x35 & 0x0F; //ANDing
P1=0x04 | 0x68; //ORing
P2=0x54 ^ 0x78; //XORing
P0=~0x55; //inversing
P1=0x9A >> 3; //shifting right 3
P2=0x77 >> 4; //shifting right 4
P0=0x6 << 4; //shifting left 4

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

LOGIC
OPERATIONS

Bit-wise
Operators in C

(cont’)

Write an 8051 C program to toggle all the bits of P0 and P2
continuously with a 250 ms delay. Using the inverting and Ex-OR
operators, respectively.

Solution:

#include <reg51.h>
void MSDelay(unsigned int);

void main(void)
{
P0=0x55;
P2=0x55;
while (1)

{
P0=~P0;
P2=P2^0xFF;
MSDelay(250);

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

LOGIC
OPERATIONS

Bit-wise
Operators in C

(cont’)

Write an 8051 C program to get bit P1.0 and send it to P2.7 after
inverting it.

Solution:

#include <reg51.h>
sbit inbit=P1^0;
sbit outbit=P2^7;
bit membit;

void main(void)
{
while (1)

{
membit=inbit; //get a bit from P1.0
outbit=~membit; //invert it and send

//it to P2.7
}

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

LOGIC
OPERATIONS

Bit-wise
Operators in C

(cont’)

Write an 8051 C program to read the P1.0 and P1.1 bits and issue an
ASCII character to P0 according to the following table.

P1.1 P1.0
0 0 send ‘0’ to P0
0 1 send ‘1’ to P0
1 0 send ‘2’ to P0
1 1 send ‘3’ to P0

Solution:

#include <reg51.h>

void main(void)
{
unsignbed char z;
z=P1;
z=z&0x3;

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

LOGIC
OPERATIONS

Bit-wise
Operators in C

(cont’)

...
switch (z)

{
case(0):
{

P0=‘0’;
break;

}
case(1):
{

P0=‘1’;
break;

}
case(2):
{

P0=‘2’;
break;

}
case(3):
{

P0=‘3’;
break;

}
}

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

DATA
CONVERSION

Packed BCD to
ASCII

Conversion

Write an 8051 C program to convert packed BCD 0x29 to ASCII and
display the bytes on P1 and P2.

Solution:

#include <reg51.h>

void main(void)
{
unsigned char x,y,z;
unsigned char mybyte=0x29;
x=mybyte&0x0F;
P1=x|0x30;
y=mybyte&0xF0;
y=y>>4;
P2=y|0x30;

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

DATA
CONVERSION

ASCII to
Packed BCD
Conversion

Write an 8051 C program to convert ASCII digits of ‘4’ and ‘7’ to
packed BCD and display them on P1.

Solution:

#include <reg51.h>

void main(void)
{
unsigned char bcdbyte;
unsigned char w=‘4’;
unsigned char z=‘7’;
w=w&0x0F;
w=w<<4;
z=z&0x0F;
bcdbyte=w|z;
P1=bcdbyte;

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

DATA
CONVERSION

Checksum Byte
in ROM

Write an 8051 C program to calculate the checksum byte for the data
25H, 62H, 3FH, and 52H.

Solution:
#include <reg51.h>

void main(void)
{
unsigned char mydata[]={0x25,0x62,0x3F,0x52};
unsigned char sum=0;
unsigned char x;
unsigned char chksumbyte;
for (x=0;x<4;x++)

{
P2=mydata[x];
sum=sum+mydata[x];
P1=sum;

}
chksumbyte=~sum+1;
P1=chksumbyte;

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

DATA
CONVERSION

Checksum Byte
in ROM
(cont’)

Write an 8051 C program to perform the checksum operation to
ensure data integrity. If data is good, send ASCII character ‘G’ to P0.
Otherwise send ‘B’ to P0.

Solution:

#include <reg51.h>

void main(void)
{
unsigned char mydata[]

={0x25,0x62,0x3F,0x52,0xE8};
unsigned char shksum=0;
unsigned char x;
for (x=0;x<5;x++)

chksum=chksum+mydata[x];
if (chksum==0)

P0=‘G’;
else

P0=‘B’;
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

DATA
CONVERSION

Binary (hex) to
Decimal and

ASCII
Conversion

Write an 8051 C program to convert 11111101 (FD hex) to decimal
and display the digits on P0, P1 and P2.

Solution:

#include <reg51.h>

void main(void)
{
unsigned char x,binbyte,d1,d2,d3;
binbyte=0xFD;
x=binbyte/10;
d1=binbyte%10;
d2=x%10;
d3=x/10;
P0=d1;
P1=d2;
P2=d3;

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

ACCESSING
CODE ROM

RAM Data
Space Usage
by 8051 C
Compiler

The 8051 C compiler allocates RAM
locations

Bank 0 – addresses 0 – 7
Individual variables – addresses 08 and
beyond
Array elements – addresses right after
variables

Array elements need contiguous RAM locations
and that limits the size of the array due to the
fact that we have only 128 bytes of RAM for
everything

Stack – addresses right after array
elements

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

ACCESSING
CODE ROM

RAM Data
Space Usage
by 8051 C
Compiler

(cont’)

Compile and single-step the following program on your 8051
simulator. Examine the contents of the 128-byte RAM space to locate
the ASCII values.

Solution:

#include <reg51.h>

void main(void)
{
unsigned char mynum[]=“ABCDEF”; //RAM space
unsigned char z;
for (z=0;z<=6;z++)

P1=mynum[z];
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

ACCESSING
CODE ROM

RAM Data
Space Usage
by 8051 C
Compiler

(cont’)

Write, compile and single-step the following program on your 8051
simulator. Examine the contents of the code space to locate the values.

Solution:

#include <reg51.h>

void main(void)
{
unsigned char mydata[100]; //RAM space
unsigned char x,z=0;
for (x=0;x<100;x++)

{
z--;
mydata[x]=z;
P1=z;

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 38HANEL

ACCESSING
CODE ROM

8052 RAM Data
Space

One of the new features of the 8052
was an extra 128 bytes of RAM space

The extra 128 bytes of RAM helps the
8051/52 C compiler to manage its
registers and resources much more
effectively

We compile the C programs for the
8052 microcontroller

Use the reg52.h header file
Choose the8052 option when compiling
the program

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 39HANEL

ACCESSING
CODE ROM

(cont’)

Compile and single-step the following program on your 8051
simulator. Examine the contents of the code space to locate the ASCII
values.

Solution:

#include <reg51.h>

void main(void)
{
code unsigned char mynum[]=“ABCDEF”;
unsigned char z;
for (z=0;z<=6;z++)

P1=mynum[z];
}

To make the C compiler use the
code space instead of the RAM
space, we need to put the
keyword code in front of the
variable declaration

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 40HANEL

ACCESSING
CODE ROM

(cont’)

Compare and contrast the following programs and discuss the
advantages and disadvantages of each one.

(a)

#include <reg51.h>
void main(void)
{
P1=‘H’;
P1=‘E’;
P1=‘L’;
P1=‘L’;
P1=‘O’;

}

...

Short and simple, but the
individual characters are
embedded into the program and it
mixes the code and data together

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 41HANEL

ACCESSING
CODE ROM

(cont’)

...

(b)
#include <reg51.h>
void main(void)
{
unsigned char mydata[]=“HELLO”;
unsigned char z;
for (z=0;z<=5;z++)

P1=mydata[z];
}

(c)
#include <reg51.h>
void main(void)
{
code unsigned char mydata[]=“HELLO”;
unsigned char z;
for (z=0;z<=5;z++)

P1=mydata[z];
}

Use the RAM data space to store
array elements, therefore the size
of the array is limited

Use a separate area of the
code space for data. This
allows the size of the array to
be as long as you want if you
have the on-chip ROM.

However, the more code space you use for data,
the less space is left for your program code

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 42HANEL

DATA
SERIALIZATION

Serializing data is a way of sending a
byte of data one bit at a time through
a single pin of microcontroller

Using the serial port (Chap. 10)
Transfer data one bit a time and control
the sequence of data and spaces in
between them

In many new generations of devices such as
LCD, ADC, and ROM the serial versions are
becoming popular since they take less space on
a PCB

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 43HANEL

DATA
SERIALIZATION

(cont’)

Write a C program to send out the value 44H serially one bit at a time
via P1.0. The LSB should go out first.

Solution:

#include <reg51.h>
sbit P1b0=P1^0;
sbit regALSB=ACC^0;

void main(void)
{
unsigned char conbyte=0x44;
unsigned char x;
ACC=conbyte;
for (x=0;x<8;x++)

{
P1b0=regALSB;
ACC=ACC>>1;

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 44HANEL

DATA
SERIALIZATION

(cont’)

Write a C program to send out the value 44H serially one bit at a time
via P1.0. The MSB should go out first.

Solution:

#include <reg51.h>
sbit P1b0=P1^0;
sbit regAMSB=ACC^7;

void main(void)
{
unsigned char conbyte=0x44;
unsigned char x;
ACC=conbyte;
for (x=0;x<8;x++)

{
P1b0=regAMSB;
ACC=ACC<<1;

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 45HANEL

DATA
SERIALIZATION

(cont’)

Write a C program to bring in a byte of data serially one bit at a time
via P1.0. The LSB should come in first.

Solution:

#include <reg51.h>
sbit P1b0=P1^0;
sbit ACCMSB=ACC^7;
bit membit;

void main(void)
{
unsigned char x;
for (x=0;x<8;x++)

{
membit=P1b0;
ACC=ACC>>1;
ACCMSB=membit;

}
P2=ACC;

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 46HANEL

DATA
SERIALIZATION

(cont’)

Write a C program to bring in a byte of data serially one bit at a time
via P1.0. The MSB should come in first.

Solution:

#include <reg51.h>
sbit P1b0=P1^0;
sbit regALSB=ACC^0;
bit membit;

void main(void)
{
unsigned char x;
for (x=0;x<8;x++)

{
membit=P1b0;
ACC=ACC<<1;
regALSB=membit;

}
P2=ACC;

}

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

HARDWARE CONNECTION
AND INTEL HEX FILE

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

PIN
DESCRIPTION

8051 family members (e.g, 8751,
89C51, 89C52, DS89C4x0)

Have 40 pins dedicated for various
functions such as I/O, -RD, -WR, address,
data, and interrupts
Come in different packages, such as

DIP(dual in-line package),
QFP(quad flat package), and
LLC(leadless chip carrier)

Some companies provide a 20-pin version
of the 8051 with a reduced number of
I/O ports for less demanding applications

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

PIN
DESCRIPTION

(cont’)

8051/52
(DS89C4x0
AT89C51
8031)

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

RST

(RXD)P3.0

(TXD)P3.1

(-INT0)P3.2

(-INT1)P3.3

(T0)P3.4

(T1)P3.5

(-WR)P3.6

(-RD)P3.7

XTAL2

XTAL1

GND

Vcc

P0.0(AD0)

P0.1(AD1)

P0.2(AD2)

P0.3(AD3)

P0.4(AD4)

P0.5(AD5)

P0.6(AD6)

P0.7(AD7)

-EA/VPP

ALE/-PROG

-PSEN

P2.7(A15)

P2.6(A14)

P2.5(A13)

P2.4(A12)

P2.3(A11)

P2.2(A10)

P2.1(A9)

P2.0(A8)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

8051 pin diagram

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

PIN
DESCRIPTION

(cont’)

8051/52
(DS89C4x0
AT89C51
8031)

P1.0
P1.1

P1.2
P1.3
P1.4
P1.5
P1.6

P1.7

RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)

P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)

P0.6(AD6)

P0.7(AD7)

-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2

3
4
5
6
7

8

9

10
11
12
13
14
15
16
17
18
19
20

40
39

38
37
36
35
34

33

32

31
30
29
28
27
26
25
24
23
22
21

A total of 32
pins are set
aside for the
four ports P0,
P1, P2, P3,
where each port
takes 8 pins

Grond

-PSEN and ALE are used
mainly in 8031-baded systems

Vcc, GND, XTAL1,
XTAL2, RST, -EA
are used by all
members of 8051 and
8031 families

P1

P3

P2

P0

Provides +5V supply
voltage to the chip

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

PIN
DESCRIPTION

XTAL1 and
XTAL2

The 8051 has an on-chip oscillator but
requires an external clock to run it

A quartz crystal oscillator is connected to
inputs XTAL1 (pin19) and XTAL2 (pin18)

The quartz crystal oscillator also needs two
capacitors of 30 pF value

XTAL2

XTAL1

GND

C2

C1

30pF

30pF

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

8051
(8031)

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

PIN
DESCRIPTION

XTAL1 and
XTAL2
(cont’)

If you use a frequency source other
than a crystal oscillator, such as a TTL
oscillator

It will be connected to XTAL1
XTAL2 is left unconnected

XTAL2

XTAL1

GND

NC

EXTERNAL

OSCILLATOR

SIGNAL

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

PIN
DESCRIPTION

XTAL1 and
XTAL2
(cont’)

The speed of 8051 refers to the
maximum oscillator frequency
connected to XTAL

ex. A 12-MHz chip must be connected to a
crystal with 12 MHz frequency or less
We can observe the frequency on the
XTAL2 pin using the oscilloscope

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

PIN
DESCRIPTION

RST

RESET pin is an input and is active
high (normally low)

Upon applying a high pulse to this pin, the
microcontroller will reset and terminate all
activities

This is often referred to as a power-on reset
Activating a power-on reset will cause all values
in the registers to be lost

00B
P0-P3

SP
PSW
ACC
DPTR
PC
Register

FF

07
00
00

0000
0000
Reset Value

RESET value of some
8051 registers

we must place
the first line of
source code in
ROM location 0

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

PIN
DESCRIPTION

RST
(cont’)

In order for the RESET input to be
effective, it must have a minimum
duration of 2 machine cycles

In other words, the high pulse must be
high for a minimum of 2 machine cycles
before it is allowed to go low

Power-on RESET circuit Power-on RESET with debounce

8.2K

Vcc

30 pF

30 pF

11.0592 MHz

+

31

19

18

9

EA/Vpp

X1

X2

RST

10 uF

8.2K

Vcc

30 pF

30 pF

31

19

18

9

EA/Vpp

X1

X2

RST

10 uF

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

PIN
DESCRIPTION

EA

EA, “external access’’, is an input pin
and must be connected to Vcc or GND

The 8051 family members all come with
on-chip ROM to store programs

-EA pin is connected to Vcc

The 8031 and 8032 family members do no
have on-chip ROM, so code is stored on
an external ROM and is fetched by
8031/32

-EA pin must be connected to GND to indicate
that the code is stored externally

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

PIN
DESCRIPTION

PSEN And ALE

The following two pins are used mainly
in 8031-based systems
PSEN, “program store enable’’, is an
output pin

This pin is connected to the OE pin of the
ROM

ALE, “address latch enable”, is an
output pin and is active high

Port 0 provides both address and data
The 8031 multiplexes address and data through
port 0 to save pins
ALE pin is used for demultiplexing the address
and data by connecting to the G pin of the
74LS373 chip

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

PIN
DESCRIPTION

I/O Port Pins

The four 8-bit I/O ports P0, P1, P2 and
P3 each uses 8 pins
All the ports upon RESET are
configured as output, ready to be used
as input ports

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

PIN
DESCRIPTION

Port 0

Port 0 is also designated as AD0-AD7,
allowing it to be used for both address
and data

When connecting an 8051/31 to an
external memory, port 0 provides both
address and data
The 8051 multiplexes address and data
through port 0 to save pins
ALE indicates if P0 has address or data

When ALE=0, it provides data D0-D7
When ALE=1, it has address A0-A7

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

PIN
DESCRIPTION

Port 0
(cont’)

It can be used for input or output,
each pin must be connected externally
to a 10K ohm pull-up resistor

This is due to the fact that P0 is an open
drain, unlike P1, P2, and P3

Open drain is a term used for MOS chips in the
same way that open collector is used for TTL
chips

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

Vcc
10 K

8051/52

Port 0

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

PIN
DESCRIPTION

Port 1 and
Port 2

In 8051-based systems with no
external memory connection

Both P1 and P2 are used as simple I/O

In 8031/51-based systems with
external memory connections

Port 2 must be used along with P0 to
provide the 16-bit address for the external
memory

P0 provides the lower 8 bits via A0 – A7
P2 is used for the upper 8 bits of the 16-bit
address, designated as A8 – A15, and it cannot
be used for I/O

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

PIN
DESCRIPTION

Port 3

Port 3 can be used as input or output
Port 3 does not need any pull-up resistors

Port 3 has the additional function of
providing some extremely important
signals

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

RD

WR

T1

T0

INT1

INT0

TxD

RxD

Function

P3.7

P3.6

P3.5

P3.4

P3.3

P3.2

P3.1

P3.0

P3 Bit

15

16

17

14

13

12

11

10

Pin
Serial
communications

External
interrupts

Timers

Read/Write signals
of external memories

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

EXPLAINING
INTEL HEX

FILE

Intel hex file is a widely used file
format

Designed to standardize the loading of
executable machine codes into a ROM chip

Loaders that come with every ROM
burner (programmer) support the Intel
hex file format

In many newer Windows-based
assemblers the Intel hex file is produced
automatically (by selecting the right
setting)
In DOS-based PC you need a utility called
OH (object-to-hex) to produce that

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

EXPLAINING
INTEL HEX

FILE
(cont’)

In the DOS environment
The object file is fed into the linker
program to produce the abs file

The abs file is used by systems that have a
monitor program

Then the abs file is fed into the OH utility
to create the Intel hex file

The hex file is used only by the loader of an
EPROM programmer to load it into the ROM
chip

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

EXPLAINING
INTEL HEX

FILE
(cont’)

LOC OBJ LINE
0000 1 ORG 0H
0000 758055 2 MAIN: MOV P0,#55H
0003 759055 3 MOV P1,#55H
0006 75A055 4 MOV P2,#55H
0009 7DFA 5 MOV R5,#250
000B 111C 6 ACALL MSDELAY
000D 7580AA 7 MOV P0,#0AAH
0010 7590AA 8 MOV P1,#0AAH
0013 75A0AA 9 MOV P2,#0AAH
0016 7DFA 10 MOV R5,#250
0018 111C 11 ACALL MSDELAY
001A 80E4 12 SJMP MAIN

13 ;--- THE 250 MILLISECOND DELAY.
14 MSDELAY:

001C 7C23 15 HERE3: MOV R4,#35
001E 7B4F 16 HERE2: MOV R3,#79
0020 DBFE 17 HERE1: DJNZ R3,HERE1
0022 DCFA 18 DJNZ R4,HERE2
0024 DDF6 19 DJNZ R5,HERE3
0026 22 20 RET

21 END

The location is the address where the
opcodes (object codes) are placed

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

EXPLAINING
INTEL HEX

FILE
(cont’)

The hex file provides the following:
The number of bytes of information to be
loaded
The information itself
The starting address where the
information must be placed

:1000000075805575905575A0557DFA111C7580AA9F
:100010007590AA75A0AA7DFA111C80E47C237B4F01
:07002000DBFEDCFADDF62235
:00000001FF

:CC AAAA TT DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD SS
:10 0000 00 75805575905575A0557DFA111C7580AA 9F
:10 0010 00 7590AA75A0AA7DFA111C80E47C237B4F 01
:07 0020 00 DBFEDCFADDF622 35
:00 0000 01 FF

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

EXPLAINING
INTEL HEX

FILE
(cont’)

:CC AAAA TT DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD SS
:10 0000 00 75805575905575A0557DFA111C7580AA 9F
:10 0010 00 7590AA75A0AA7DFA111C80E47C237B4F 01
:07 0020 00 DBFEDCFADDF622 35
:00 0000 01 FF

Each line starts with a colon

Count byte – how many bytes,
00 to 16, are in the line

16-bit address – The loader
places the first byte of data
into this memory address

Single byte – this last byte is the checksum
byte of everything in that line

Real information (data or code) – There is a maximum
of 16 bytes in this part. The loader places this
information into successive memory locations of ROM

Type –
00, there are more
lines to come after
this line
01, this is the last
line and the
loading should
stop after this line

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

EXPLAINING
INTEL HEX

FILE
(cont’)

Example 8-4

Verify the checksum byte for line 3 of Figure 8-9. Verify also that
the information is not corrupted.

Solution:

:07 0020 00 DBFEDCFADDF622 35

07+00+20+00+DB+FE+DC+FA+DD+F6+22=5CBH

CBH

35H

If we add all the information including the checksum byte, and drop
the carries, we get 00.

5CBH + 35H = 600H

Dropping the carry 5

2’s complement

:07 0020 00 DBFEDCFADDF622 35

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

TIMER PROGRAMMING

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

PROGRAMMING
TIMERS

The 8051 has two timers/counters,
they can be used either as

Timers to generate a time delay or as
Event counters to count events happening
outside the microcontroller

Both Timer 0 and Timer 1 are 16 bits
wide

Since 8051 has an 8-bit architecture, each
16-bits timer is accessed as two separate
registers of low byte and high byte

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

PROGRAMMING
TIMERS

Timer 0 & 1
Registers

Accessed as low byte and high byte
The low byte register is called TL0/TL1
and
The high byte register is called TH0/TH1
Accessed like any other register

MOV TL0,#4FH
MOV R5,TH0

TH0 TL0

D0D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15

TH1 TL1

D0D1D2D3D4D5D6D7D8D9D10D11D12D13D14D15

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

PROGRAMMING
TIMERS

TMOD
Register

Both timers 0 and 1 use the same
register, called TMOD (timer mode), to
set the various timer operation modes
TMOD is a 8-bit register

The lower 4 bits are for Timer 0
The upper 4 bits are for Timer 1
In each case,

The lower 2 bits are used to set the timer mode
The upper 2 bits to specify the operation

Timer1
GATE C/T M1 M0

(MSB)

Timer0
GATE C/T M1 M0

(LSB)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

PROGRAMMING
TIMERS

TMOD
Register

(cont’)

Split timer mode311

8-bit auto reload
8-bit auto reload timer/counter; THx holds a
value which is to be reloaded TLx each time
it overfolws

201

16-bit timer mode
16-bit timer/counter THx and TLx are
cascaded; there is no prescaler

110

13-bit timer mode
8-bit timer/counter THx with TLx as 5-bit
prescaler

000

Operating ModeModeM0M1

Timer1
GATE C/T M1 M0

(MSB)

Timer0
GATE C/T M1 M0

(LSB)

Timer or counter selected
Cleared for timer operation (input from internal
system clock)
Set for counter operation (input from Tx input pin)

Gating control when set.
Timer/counter is enable
only while the INTx pin is
high and the TRx control
pin is set
When cleared, the timer is
enabled whenever the TRx
control bit is set

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

PROGRAMMING
TIMERS

TMOD
Register

(cont’)

Example 9-1
Indicate which mode and which timer are selected for each of the following.
(a) MOV TMOD, #01H (b) MOV TMOD, #20H (c) MOV TMOD, #12H

Solution:

We convert the value from hex to binary. From Figure 9-3 we have:
(a) TMOD = 00000001, mode 1 of timer 0 is selected.
(b) TMOD = 00100000, mode 2 of timer 1 is selected.
(c) TMOD = 00010010, mode 2 of timer 0, and mode 1 of timer 1 are

selected.

Example 9-2

Find the timer’s clock frequency and its period for various 8051-based system,
with the crystal frequency 11.0592 MHz when C/T bit of TMOD is 0.

Solution:

1/12 × 11.0529 MHz = 921.6 MHz;
T = 1/921.6 kHz = 1.085 us

XTAL
oscillator ÷12

If C/T = 0, it is used
as a timer for time
delay generation.
The clock source for
the time delay is the
crystal frequency of
the 8051

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

PROGRAMMING
TIMERS

TMOD
Register

GATE

Timers of 8051 do starting and stopping
by either software or hardware control

In using software to start and stop the timer
where GATE=0

The start and stop of the timer are controlled by
way of software by the TR (timer start) bits TR0
and TR1

– The SETB instruction starts it, and it is
stopped by the CLR instruction

– These instructions start and stop the timers
as long as GATE=0 in the TMOD register

The hardware way of starting and stopping
the timer by an external source is achieved
by making GATE=1 in the TMOD register

Find the value for TMOD if we want to program timer 0 in mode 2,
use 8051 XTAL for the clock source, and use instructions to start
and stop the timer.

TMOD = 0000 0010

• Timer 0, mode 2
• C/T = 0 to use
XTAL clock source
• gate = 0 to use
internal (software) start
and stop method.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

The following are the characteristics
and operations of mode1:

1. It is a 16-bit timer; therefore, it allows
value of 0000 to FFFFH to be loaded into
the timer’s register TL and TH

2. After TH and TL are loaded with a 16-bit
initial value, the timer must be started

This is done by SETB TR0 for timer 0 and
SETB TR1 for timer 1

3. After the timer is started, it starts to
count up

It counts up until it reaches its limit of FFFFH

XTAL
oscillator ÷12

TR

TH TL

C/T = 0

TF

TF goes high
when FFFF → 0

Overflow
flag

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

(cont’)

3. (cont’)
When it rolls over from FFFFH to 0000, it sets
high a flag bit called TF (timer flag)
– Each timer has its own timer flag: TF0 for

timer 0, and TF1 for timer 1
– This timer flag can be monitored
When this timer flag is raised, one option
would be to stop the timer with the
instructions CLR TR0 or CLR TR1, for timer 0
and timer 1, respectively

4. After the timer reaches its limit and rolls
over, in order to repeat the process

TH and TL must be reloaded with the original
value, and
TF must be reloaded to 0

XTAL
oscillator ÷12

TR

TH TL TF

TF goes high
when FFFF → 0

Overflow
flagC/T = 0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program

To generate a time delay
1. Load the TMOD value register indicating

which timer (timer 0 or timer 1) is to be
used and which timer mode (0 or 1) is
selected

2. Load registers TL and TH with initial count
value

3. Start the timer
4. Keep monitoring the timer flag (TF) with

the JNB TFx,target instruction to see
if it is raised

Get out of the loop when TF becomes high
5. Stop the timer
6. Clear the TF flag for the next round
7. Go back to Step 2 to load TH and TL

again

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-4
In the following program, we create a square wave of 50% duty cycle (with
equal portions high and low) on the P1.5 bit. Timer 0 is used to generate the
time delay. Analyze the program

MOV TMOD,#01 ;Timer 0, mode 1(16-bit mode)
HERE: MOV TL0,#0F2H ;TL0=F2H, the low byte

MOV TH0,#0FFH ;TH0=FFH, the high byte
CPL P1.5 ;toggle P1.5
ACALL DELAY
SJMP HERE

In the above program notice the following step.
1. TMOD is loaded.
2. FFF2H is loaded into TH0-TL0.
3. P1.5 is toggled for the high and low portions of the pulse.

…

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-4 (cont’)

DELAY:
SETB TR0 ;start the timer 0

AGAIN: JNB TF0,AGAIN ;monitor timer flag 0
;until it rolls over

CLR TR0 ;stop timer 0
CLR TF0 ;clear timer 0 flag
RET

4. The DELAY subroutine using the timer is called.
5. In the DELAY subroutine, timer 0 is started by the SETB TR0 instruction.
6. Timer 0 counts up with the passing of each clock, which is provided by the

crystal oscillator. As the timer counts up, it goes through the states of FFF3,
FFF4, FFF5, FFF6, FFF7, FFF8, FFF9, FFFA, FFFB, and so on until it
reaches FFFFH. One more clock rolls it to 0, raising the timer flag (TF0=1).

At that point, the JNB instruction falls through.

7. Timer 0 is stopped by the instruction CLR TR0. The DELAY subroutine
ends, and the process is repeated.

Notice that to repeat the process, we must reload the TL and TH registers, and
start the process is repeated …

FFF2 FFFFFFF4FFF3 0000

TF=0 TF=0TF=0TF=0 TF=1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-5
In Example 9-4, calculate the amount of time delay in the DELAY
subroutine generated by the timer. Assume XTAL = 11.0592 MHz.

Solution:
The timer works with a clock frequency of 1/12 of the XTAL
frequency; therefore, we have 11.0592 MHz / 12 = 921.6 kHz as the
timer frequency. As a result, each clock has a period of T =
1/921.6kHz = 1.085us. In other words, Timer 0 counts up each 1.085
us resulting in delay = number of counts × 1.085us.

The number of counts for the roll over is FFFFH – FFF2H = 0DH (13
decimal). However, we add one to 13 because of the extra clock
needed when it rolls over from FFFF to 0 and raise the TF flag. This
gives 14 × 1.085us = 15.19us for half the pulse. For the entire period it
is T = 2 × 15.19us = 30.38us as the time delay generated by the timer.

(a) in hex
(FFFF – YYXX + 1) ×
1.085 us, where YYXX
are TH, TL initial
values respectively.
Notice that value
YYXX are in hex.

(b) in decimal
Convert YYXX values
of the TH, TL register
to decimal to get a
NNNNN decimal, then
(65536 - NNNN) ×
1.085 us

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-6
In Example 9-5, calculate the frequency of the square wave generated
on pin P1.5.

Solution:
In the timer delay calculation of Example 9-5, we did not include the
overhead due to instruction in the loop. To get a more accurate timing,
we need to add clock cycles due to this instructions in the loop. To do
that, we use the machine cycle from Table A-1 in Appendix A, as
shown below.

Cycles
HERE: MOV TL0,#0F2H 2

MOV TH0,#0FFH 2
CPL P1.5 1
ACALL DELAY 2
SJMP HERE 2

DELAY:
SETB TR0 1

AGAIN: JNB TF0,AGAIN 14
CLR TR0 1
CLR TF0 1
RET 2

Total 28
T = 2 × 28 × 1.085 us = 60.76 us and F = 16458.2 Hz

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-7
Find the delay generated by timer 0 in the following code, using both
of the Methods of Figure 9-4. Do not include the overhead due to
instruction.

CLR P2.3 ;Clear P2.3
MOV TMOD,#01 ;Timer 0, 16-bitmode

HERE: MOV TL0,#3EH ;TL0=3Eh, the low byte
MOV TH0,#0B8H ;TH0=B8H, the high byte
SETB P2.3 ;SET high timer 0
SETB TR0 ;Start the timer 0

AGAIN: JNB TF0,AGAIN ;Monitor timer flag 0
CLR TR0 ;Stop the timer 0
CLR TF0 ;Clear TF0 for next round
CLR P2.3

Solution:
(a) (FFFFH – B83E + 1) = 47C2H = 18370 in decimal and 18370 ×
1.085 us = 19.93145 ms
(b) Since TH – TL = B83EH = 47166 (in decimal) we have 65536 –
47166 = 18370. This means that the timer counts from B38EH to
FFFF. This plus Rolling over to 0 goes through a total of 18370 clock
cycles, where each clock is 1.085 us in duration. Therefore, we have
18370 × 1.085 us = 19.93145 ms as the width of the pulse.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-8
Modify TL and TH in Example 9-7 to get the largest time delay
possible. Find the delay in ms. In your calculation, exclude the
overhead due to the instructions in the loop.

Solution:
To get the largest delay we make TL and TH both 0. This will count
up from 0000 to FFFFH and then roll over to zero.

CLR P2.3 ;Clear P2.3
MOV TMOD,#01 ;Timer 0, 16-bitmode

HERE: MOV TL0,#0 ;TL0=0, the low byte
MOV TH0,#0 ;TH0=0, the high byte
SETB P2.3 ;SET high P2.3
SETB TR0 ;Start timer 0

AGAIN: JNB TF0,AGAIN ;Monitor timer flag 0
CLR TR0 ;Stop the timer 0
CLR TF0 ;Clear timer 0 flag
CLR P2.3

Making TH and TL both zero means that the timer will count from
0000 to FFFF, and then roll over to raise the TF flag. As a result, it
goes through a total Of 65536 states. Therefore, we have delay =
(65536 - 0) × 1.085 us = 71.1065ms.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Steps to Mode 1
Program
(cont’)

Example 9-9
The following program generates a square wave on P1.5 continuously

using timer 1 for a time delay. Find the frequency of the square
wave if XTAL = 11.0592 MHz. In your calculation do not
include the overhead due to Instructions in the loop.

MOV TMOD,#10;Timer 1, mod 1 (16-bitmode)
AGAIN: MOV TL1,#34H ;TL1=34H, low byte of timer

MOV TH1,#76H ;TH1=76H, high byte timer
SETB TR1 ;start the timer 1

BACK: JNB TF1,BACK ;till timer rolls over
CLR TR1 ;stop the timer 1
CPL P1.5 ;comp. p1. to get hi, lo
CLR TF1 ;clear timer flag 1
SJMP AGAIN ;is not auto-reload

Solution:
Since FFFFH – 7634H = 89CBH + 1 = 89CCH and 89CCH = 35276

clock count and 35276 × 1.085 us = 38.274 ms for half of the
square wave. The frequency = 13.064Hz.

Also notice that the high portion and low portion of the square wave
pulse are equal. In the above calculation, the overhead due to all
the instruction in the loop is not included.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Finding the
Loaded Timer

Values

To calculate the values to be loaded
into the TL and TH registers, look at
the following example

Assume XTAL = 11.0592 MHz, we can
use the following steps for finding the TH,
TL registers’ values
1. Divide the desired time delay by 1.085 us
2. Perform 65536 – n, where n is the decimal

value we got in Step1
3. Convert the result of Step2 to hex, where

yyxx is the initial hex value to be loaded into
the timer’s register

4. Set TL = xx and TH = yy

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Finding the
Loaded Timer

Values
(cont’)

Example 9-10
Assume that XTAL = 11.0592 MHz. What value do we need to load
the timer’s register if we want to have a time delay of 5 ms
(milliseconds)? Show the program for timer 0 to create a pulse width
of 5 ms on P2.3.

Solution:
Since XTAL = 11.0592 MHz, the counter counts up every 1.085 us.
This means that out of many 1.085 us intervals we must make a 5 ms
pulse. To get that, we divide one by the other. We need 5 ms / 1.085
us = 4608 clocks. To Achieve that we need to load into TL and TH
the value 65536 – 4608 = EE00H. Therefore, we have TH = EE and
TL = 00.

CLR P2.3 ;Clear P2.3
MOV TMOD,#01 ;Timer 0, 16-bitmode

HERE: MOV TL0,#0 ;TL0=0, the low byte
MOV TH0,#0EEH ;TH0=EE, the high byte
SETB P2.3 ;SET high P2.3
SETB TR0 ;Start timer 0

AGAIN: JNB TF0,AGAIN ;Monitor timer flag 0
CLR TR0 ;Stop the timer 0
CLR TF0 ;Clear timer 0 flag

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Finding the
Loaded Timer

Values
(cont’)

Example 9-11
Assume that XTAL = 11.0592 MHz, write a program to generate a

square wave of 2 kHz frequency on pin P1.5.

Solution:
This is similar to Example 9-10, except that we must toggle the bit to

generate the square wave. Look at the following steps.
(a) T = 1 / f = 1 / 2 kHz = 500 us the period of square wave.
(b) 1 / 2 of it for the high and low portion of the pulse is 250 us.
(c) 250 us / 1.085 us = 230 and 65536 – 230 = 65306 which in hex

is FF1AH.
(d) TL = 1A and TH = FF, all in hex. The program is as follow.

MOV TMOD,#01 ;Timer 0, 16-bitmode
AGAIN: MOV TL1,#1AH ;TL1=1A, low byte of timer

MOV TH1,#0FFH ;TH1=FF, the high byte
SETB TR1 ;Start timer 1

BACK: JNB TF1,BACK ;until timer rolls over
CLR TR1 ;Stop the timer 1
CLR P1.5 ;Clear timer flag 1
CLR TF1 ;Clear timer 1 flag
SJMP AGAIN ;Reload timer

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Finding the
Loaded Timer

Values
(cont’)

Example 9-12
Assume XTAL = 11.0592 MHz, write a program to generate a square

wave of 50 kHz frequency on pin P2.3.

Solution:
Look at the following steps.
(a) T = 1 / 50 = 20 ms, the period of square wave.
(b) 1 / 2 of it for the high and low portion of the pulse is 10 ms.
(c) 10 ms / 1.085 us = 9216 and 65536 – 9216 = 56320 in decimal,

and in hex it is DC00H.
(d) TL = 00 and TH = DC (hex).

MOV TMOD,#10H ;Timer 1, mod 1
AGAIN: MOV TL1,#00 ;TL1=00,low byte of timer

MOV TH1,#0DCH ;TH1=DC, the high byte
SETB TR1 ;Start timer 1

BACK: JNB TF1,BACK ;until timer rolls over
CLR TR1 ;Stop the timer 1
CLR P2.3 ;Comp. p2.3 to get hi, lo
SJMP AGAIN ;Reload timer

;mode 1 isn’t auto-reload

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

PROGRAMMING
TIMERS

Mode 1
Programming

Generating Large
Time Delay

Example 9-13
Examine the following program and find the time delay in seconds.

Exclude the overhead due to the instructions in the loop.

MOV TMOD,#10H ;Timer 1, mod 1
MOV R3,#200 ;cnter for multiple delay

AGAIN: MOV TL1,#08H ;TL1=08,low byte of timer
MOV TH1,#01H ;TH1=01,high byte
SETB TR1 ;Start timer 1

BACK: JNB TF1,BACK ;until timer rolls over
CLR TR1 ;Stop the timer 1
CLR TF1 ;clear Timer 1 flag
DJNZ R3,AGAIN ;if R3 not zero then

;reload timer
Solution:
TH-TL = 0108H = 264 in decimal and 65536 – 264 = 65272. Now

65272 × 1.085 μs = 70.820 ms, and for 200 of them we have
200 ×70.820 ms = 14.164024 seconds.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

PROGRAMMING
TIMERS

Mode 2
Programming

The following are the characteristics
and operations of mode 2:

1. It is an 8-bit timer; therefore, it allows
only values of 00 to FFH to be loaded
into the timer’s register TH

2. After TH is loaded with the 8-bit value,
the 8051 gives a copy of it to TL

Then the timer must be started
This is done by the instruction SETB TR0 for
timer 0 and SETB TR1 for timer 1

3. After the timer is started, it starts to
count up by incrementing the TL register

It counts up until it reaches its limit of FFH
When it rolls over from FFH to 00, it sets high
the TF (timer flag)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

PROGRAMMING
TIMERS

Mode 2
Programming

(cont’)

4. When the TL register rolls from FFH to 0
and TF is set to 1, TL is reloaded
automatically with the original value kept
by the TH register

To repeat the process, we must simply clear
TF and let it go without any need by the
programmer to reload the original value
This makes mode 2 an auto-reload, in
contrast with mode 1 in which the
programmer has to reload TH and TL

XTAL
oscillator ÷12

TR

TH

TL

C/T = 0

TF

TF goes high
when FF → 0

Overflow
flag

Reload

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

PROGRAMMING
TIMERS

Mode 2
Programming

Steps to Mode 2
Program

To generate a time delay
1. Load the TMOD value register indicating

which timer (timer 0 or timer 1) is to be
used, and the timer mode (mode 2) is
selected

2. Load the TH registers with the initial
count value

3. Start timer
4. Keep monitoring the timer flag (TF) with

the JNB TFx,target instruction to see
whether it is raised

Get out of the loop when TF goes high
5. Clear the TF flag
6. Go back to Step4, since mode 2 is auto-

reload

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

PROGRAMMING
TIMERS

Mode 2
Programming

Steps to Mode 2
Program
(cont’)

Example 9-14
Assume XTAL = 11.0592 MHz, find the frequency of the square

wave generated on pin P1.0 in the following program

MOV TMOD,#20H ;T1/8-bit/auto reload
MOV TH1,#5 ;TH1 = 5
SETB TR1 ;start the timer 1

BACK: JNB TF1,BACK ;till timer rolls over
CPL P1.0 ;P1.0 to hi, lo
CLR TF1 ;clear Timer 1 flag
SJMP BACK ;mode 2 is auto-reload

Solution:
First notice the target address of SJMP. In mode 2 we do not need to

reload TH since it is auto-reload. Now (256 - 05) × 1.085 us =
251 × 1.085 us = 272.33 us is the high portion of the pulse. Since
it is a 50% duty cycle square wave, the period T is twice that; as
a result T = 2 × 272.33 us = 544.67 us and the frequency =
1.83597 kHz

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

PROGRAMMING
TIMERS

Mode 2
Programming

Steps to Mode 2
Program
(cont’)

Example 9-15
Find the frequency of a square wave generated on pin P1.0.

Solution:

MOV TMOD,#2H ;Timer 0, mod 2
;(8-bit, auto reload)

MOV TH0,#0
AGAIN: MOV R5,#250 ;multiple delay count

ACALL DELAY
CPL P1.0
SJMP AGAIN

DELAY: SETB TR0 ;start the timer 0
BACK: JNB TF0,BACK ;stay timer rolls over

CLR TR0 ;stop timer
CLR TF0 ;clear TF for next round
DJNZ R5,DELAY
RET

T = 2 (250 × 256 × 1.085 us) = 138.88ms, and frequency = 72 Hz

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

PROGRAMMING
TIMERS

Mode 2
Programming

Steps to Mode 2
Program
(cont’)

Example 9-16
Assuming that we are programming the timers for mode 2, find the

value (in hex) loaded into TH for each of the following cases.

(a) MOV TH1,#-200 (b) MOV TH0,#-60
(c) MOV TH1,#-3 (d) MOV TH1,#-12
(e) MOV TH0,#-48

Solution:
You can use the Windows scientific calculator to verify the result

provided by the assembler. In Windows calculator, select
decimal and enter 200. Then select hex, then +/- to get the TH
value. Remember that we only use the right two digits and ignore
the rest since our data is an 8-bit data.

Decimal 2’s complement (TH value)
-3 FDH

-12 F4H
-48 D0H
-60 C4H

-200 38H

The advantage of using
negative values is that you
don’t need to calculate the
value loaded to THx

The number 200 is the
timer count till the TF
is set to 1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

COUNTER
PROGRAMMING

Timers can also be used as counters
counting events happening outside the
8051

When it is used as a counter, it is a pulse
outside of the 8051 that increments the
TH, TL registers
TMOD and TH, TL registers are the same
as for the timer discussed previously

Programming the timer in the last
section also applies to programming it
as a counter

Except the source of the frequency

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

COUNTER
PROGRAMMING

C/T Bit in
TMOD Register

The C/T bit in the TMOD registers
decides the source of the clock for the
timer

When C/T = 1, the timer is used as a
counter and gets its pulses from outside
the 8051

The counter counts up as pulses are fed from
pins 14 and 15, these pins are called T0 (timer
0 input) and T1 (timer 1 input)

Timer/counter 1 external inputT1P3.515

Timer/counter 0 external inputT0P3.414

DescriptionFunctionPort PinPin

Port 3 pins used for Timers 0 and 1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

COUNTER
PROGRAMMING

C/T Bit in
TMOD Register

(cont’)

Example 9-18
Assuming that clock pulses are fed into pin T1, write a program
for counter 1 in mode 2 to count the pulses and display the state
of the TL1 count on P2, which connects to 8 LEDs.

Solution:
MOV TM0D,#01100000B ;counter 1, mode 2,

;C/T=1 external pulses
MOV TH1,#0 ;clear TH1
SETB P3.5 ;make T1 input

AGAIN: SETB TR1 ;start the counter
BACK: MOV A,TL1 ;get copy of TL

MOV P2,A ;display it on port 2
JNB TF1,Back ;keep doing, if TF = 0
CLR TR1 ;stop the counter 1
CLR TF1 ;make TF=0
SJMP AGAIN ;keep doing it

Notice in the above program the role of the instruction SETB P3.5.
Since ports are set up for output when the 8051 is powered up,
we make P3.5 an input port by making it high. In other words,
we must configure (set high) the T1 pin (pin P3.5) to allow
pulses to be fed into it.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

COUNTER
PROGRAMMING

C/T Bit in
TMOD Register

(cont’)
TR

TH TL

C/T = 1

TF

TF goes high
when FFFF → 0

Overflow
flag

Timer
external
input pin
3.4 or 3.5

TR

TH

TL

C/T = 1

TF

TF goes high
when FF → 0

Overflow
flag

Reload

Timer
external
input pin
3.4 or 3.5

Timer with external input (Mode 1)

Timer with external input (Mode 2)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

COUNTER
PROGRAMMING

TCON
Register

TCON (timer control) register is an 8-
bit register

TCON: Timer/Counter Control Register

IT0IE0IT1IE1TR0TF0TR1TF1

The upper four
bits are used to
store the TF and
TR bits of both
timer 0 and 1

The lower 4 bits
are set aside for
controlling the
interrupt bits

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

COUNTER
PROGRAMMING

TCON
Register

(cont’)

TCON register is a bit-addressable
register

CLR TF1 = CLR TCON.7

SETB TF1 = SETB TCON.7

CLR TR1 = CLR TCON.6

SETB TR1 = SETB TCON.6

For timer 1

CLR TF0 = CLR TCON.5

SETB TF0 = SETB TCON.5

CLR TR0 = CLR TCON.4

SETB TR0 = SETB TCON.4

For timer 0

Equivalent instruction for the Timer Control Register

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

COUNTER
PROGRAMMING

TCON
Register

Case of GATE = 1

If GATE = 1, the start and stop of the
timer are done externally through pins
P3.2 and P3.3 for timers 0 and 1,
respectively

This hardware way allows to start or stop
the timer externally at any time via a
simple switch

XTAL
oscillator ÷12

TR

C/T = 0

Gate
INT0 Pin

Pin 3.2 or 3.3

C/T = 1
Tx Pin

Pin 3.4 or 3.5

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

PROGRAMMING
TIMERS IN C

Accessing
Timer Registers

Example 9-20
Write an 8051 C program to toggle all the bits of port P1 continuously

with some delay in between. Use Timer 0, 16-bit mode to
generate the delay.

Solution:
#include <reg51.h>
void T0Delay(void);
void main(void){
while (1) {
P1=0x55;
T0Delay();
P1=0xAA;
T0Delay();

}
}
void T0Delay(){
TMOD=0x01;
TL0=0x00;
TH0=0x35;
TR0=1;
while (TF0==0);
TR0=0;
TF0=0;

}

FFFFH – 3500H = CAFFH
= 51967 + 1 = 51968
51968 × 1.085 μs = 56.384 ms is the
approximate delay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

PROGRAMMING
TIMERS IN C

Calculating
Delay Length
Using Timers

To speed up the 8051, many recent
versions of the 8051 have reduced the
number of clocks per machine cycle
from 12 to four, or even one
The frequency for the timer is always
1/12th the frequency of the crystal
attached to the 8051, regardless of the
8051 version

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 38HANEL

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using

Mode 1 (16-bit
Non Auto-

reload)

Example 9-21
Write an 8051 C program to toggle only bit P1.5 continuously every

50 ms. Use Timer 0, mode 1 (16-bit) to create the delay. Test the
program on the (a) AT89C51 and (b) DS89C420.

Solution:
#include <reg51.h>
void T0M1Delay(void);
sbit mybit=P1^5;
void main(void){
while (1) {
mybit=~mybit;
T0M1Delay();

}
}
void T0M1Delay(void){
TMOD=0x01;
TL0=0xFD;
TH0=0x4B;
TR0=1;
while (TF0==0);
TR0=0;
TF0=0;

}

FFFFH – 4BFDH = B402H
= 46082 + 1 = 46083
46083 × 1.085 μs = 50 ms

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 39HANEL

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using

Mode 1 (16-bit
Non Auto-

reload)
(cont’)

Example 9-22
Write an 8051 C program to toggle all bits of P2 continuously every

500 ms. Use Timer 1, mode 1 to create the delay.

Solution:
//tested for DS89C420, XTAL = 11.0592 MHz
#include <reg51.h>
void T1M1Delay(void);
void main(void){
unsigned char x;
P2=0x55;
while (1) {
P2=~P2;
for (x=0;x<20;x++)

T1M1Delay();
}

}
void T1M1Delay(void){
TMOD=0x10;
TL1=0xFE;
TH1=0xA5;
TR1=1;
while (TF1==0);
TR1=0;
TF1=0;

}

A5FEH = 42494 in decimal
65536 – 42494 = 23042
23042 × 1.085 μs = 25 ms and
20 × 25 ms = 500 ms

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 40HANEL

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using

Mode 1 (16-bit
Non Auto-

reload)
(cont’)

Example 9-25
A switch is connected to pin P1.2. Write an 8051 C program to
monitor SW and create the following frequencies on pin P1.7:
SW=0: 500Hz
SW=1: 750Hz, use Timer 0, mode 1 for both of them.

Solution:
#include <reg51.h>
sbit mybit=P1^5;
sbit SW=P1^7;
void T0M1Delay(unsigned char);
void main(void){
SW=1;
while (1) {
mybit=~mybit;
if (SW==0)

T0M1Delay(0);
else

T0M1Delay(1);
}

}

.....

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 41HANEL

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using

Mode 1 (16-bit
Non Auto-

reload)
(cont’)

Example 9-25

.....

void T0M1Delay(unsigned char c){
TMOD=0x01;
if (c==0) {

TL0=0x67;
TH0=0xFC;

}
else {

TL0=0x9A;
TH0=0xFD;

}
TR0=1;
while (TF0==0);
TR0=0;
TF0=0;

}

FC67H = 64615
65536 – 64615 = 921
921 × 1.085 μs = 999.285 μs
1 / (999.285 μs × 2) = 500 Hz

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 42HANEL

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using

Mode 2 (8-bit
Auto-reload)

Example 9-23
Write an 8051 C program to toggle only pin P1.5 continuously every

250 ms. Use Timer 0, mode 2 (8-bit auto-reload) to create the
delay.

Solution:
#include <reg51.h>
void T0M2Delay(void);
sbit mybit=P1^5;
void main(void){
unsigned char x,y;
while (1) {
mybit=~mybit;
for (x=0;x<250;x++)

for (y=0;y<36;y++) //we put 36, not 40
T0M2Delay();

}
}
void T0M2Delay(void){
TMOD=0x02;
TH0=-23;
TR0=1;
while (TF0==0);
TR0=0;
TF0=0;

}

256 – 23 = 233
23 × 1.085 μs = 25 μs and
25 μs × 250 × 40 = 250 ms

Due to overhead of the for loop
in C, we put 36 instead of 40

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 43HANEL

PROGRAMMING
TIMERS IN C

Times 0/1
Delay Using

Mode 2 (8-bit
Auto-reload)

(cont’)

Example 9-24
Write an 8051 C program to create a frequency of 2500 Hz on pin

P2.7. Use Timer 1, mode 2 to create delay.

Solution:
#include <reg51.h>
void T1M2Delay(void);
sbit mybit=P2^7;
void main(void){
unsigned char x;
while (1) {
mybit=~mybit;
T1M2Delay();

}
}
void T1M2Delay(void){
TMOD=0x20;
TH1=-184;
TR1=1;
while (TF1==0);
TR1=0;
TF1=0;

}

1/2500 Hz = 400 μs
400 μs /2 = 200 μs
200 μs / 1.085 μs = 184

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 44HANEL

PROGRAMMING
TIMERS IN C

C Programming
of Timers as

Counters

Example 9-26
Assume that a 1-Hz external clock is being fed into pin T1 (P3.5).
Write a C program for counter 1 in mode 2 (8-bit auto reload) to count
up and display the state of the TL1 count on P1. Start the count at 0H.

Solution:
#include <reg51.h>
sbit T1=P3^5;
void main(void){
T1=1;
TMOD=0x60;
TH1=0;
while (1) {
do {

TR1=1;
P1=TL1;

}
while (TF1==0);
TR1=0;
TF1=0;

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 45HANEL

PROGRAMMING
TIMERS IN C

C Programming
of Timers as

Counters
(cont’)

Example 9-27
Assume that a 1-Hz external clock is being fed into pin T0 (P3.4).
Write a C program for counter 0 in mode 1 (16-bit) to count the pulses
and display the state of the TH0 and TL0 registers on P2 and P1,
respectively.

Solution:
#include <reg51.h>
void main(void){
T0=1;
TMOD=0x05;
TL0=0
TH0=0;
while (1) {
do {

TR0=1;
P1=TL0;
P2=TH0;

}
while (TF0==0);
TR0=0;
TF0=0;

}
}

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University

Chung-Ping Young
楊中平

SERIAL COMMUNICATION

Department of Computer Science and Information Engineering
National Cheng Kung University 2HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

Computers transfer data in two ways:
Parallel

Often 8 or more lines (wire conductors) are
used to transfer data to a device that is only a
few feet away

Serial
To transfer to a device located many meters
away, the serial method is used
The data is sent one bit at a time

Sender Receiver

Serial Transfer Parallel Transfer

Sender Receiver

D0

D7

Department of Computer Science and Information Engineering
National Cheng Kung University 3HANEL

BASICS OF
SERIAL

COMMUNICA-
TION
(cont’)

At the transmitting end, the byte of
data must be converted to serial bits
using parallel-in-serial-out shift register
At the receiving end, there is a serial-
in-parallel-out shift register to receive
the serial data and pack them into byte
When the distance is short, the digital
signal can be transferred as it is on a
simple wire and requires no modulation
If data is to be transferred on the
telephone line, it must be converted
from 0s and 1s to audio tones

This conversion is performed by a device
called a modem, “Modulator/demodulator”

Department of Computer Science and Information Engineering
National Cheng Kung University 4HANEL

BASICS OF
SERIAL

COMMUNICA-
TION
(cont’)

Serial data communication uses two
methods

Synchronous method transfers a block of
data at a time
Asynchronous method transfers a single
byte at a time

It is possible to write software to use
either of these methods, but the
programs can be tedious and long

There are special IC chips made by many
manufacturers for serial communications

UART (universal asynchronous Receiver-
transmitter)
USART (universal synchronous-asynchronous
Receiver-transmitter)

Department of Computer Science and Information Engineering
National Cheng Kung University 5HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

Half- and Full-
Duplex

Transmission

If data can be transmitted and received,
it is a duplex transmission

If data transmitted one way a time, it is
referred to as half duplex
If data can go both ways at a time, it is full
duplex

This is contrast to simplex transmission

TransmitterSimplex Receiver

Transmitter

TransmitterReceiver

Receiver
Half Duplex

Full Duplex
Transmitter

TransmitterReceiver

Receiver

Department of Computer Science and Information Engineering
National Cheng Kung University 6HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

Start and Stop
Bits

A protocol is a set of rules agreed by
both the sender and receiver on

How the data is packed
How many bits constitute a character
When the data begins and ends

Asynchronous serial data
communication is widely used for
character-oriented transmissions

Each character is placed in between start
and stop bits, this is called framing
Block-oriented data transfers use the
synchronous method

The start bit is always one bit, but the
stop bit can be one or two bits

Department of Computer Science and Information Engineering
National Cheng Kung University 7HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

Start and Stop
Bits

(cont’)

The start bit is always a 0 (low) and the
stop bit(s) is 1 (high)

ASCII character “A” (8-bit binary 0100 0001)

When there is no
transfer, the signal
is 1 (high), which is
referred to as mark

The 0 (low) is
referred to as space The transmission begins with a

start bit followed by D0, the
LSB, then the rest of the bits
until MSB (D7), and finally,
the one stop bit indicating the
end of the character

Space Stop

Bit
0 0 0 0 0 0

Start
1 1

D7 D0

Mark
Bit

Goes out firstGoes out last

Department of Computer Science and Information Engineering
National Cheng Kung University 8HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

Start and Stop
Bits

(cont’)

Due to the extended ASCII characters,
8-bit ASCII data is common

In older systems, ASCII characters were 7-
bit

In modern PCs the use of one stop bit
is standard

In older systems, due to the slowness of
the receiving mechanical device, two stop
bits were used to give the device sufficient
time to organize itself before transmission
of the next byte

Department of Computer Science and Information Engineering
National Cheng Kung University 9HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

Start and Stop
Bits

(cont’)

Assuming that we are transferring a
text file of ASCII characters using 1
stop bit, we have a total of 10 bits for
each character

This gives 25% overhead, i.e. each 8-bit
character with an extra 2 bits

In some systems in order to maintain
data integrity, the parity bit of the
character byte is included in the data
frame

UART chips allow programming of the
parity bit for odd-, even-, and no-parity
options

Department of Computer Science and Information Engineering
National Cheng Kung University 10HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

Data Transfer
Rate

The rate of data transfer in serial data
communication is stated in bps (bits per
second)
Another widely used terminology for
bps is baud rate

It is modem terminology and is defined as
the number of signal changes per second
In modems, there are occasions when a
single change of signal transfers several
bits of data

As far as the conductor wire is
concerned, the baud rate and bps are
the same, and we use the terms
interchangeably

Department of Computer Science and Information Engineering
National Cheng Kung University 11HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

Data Transfer
Rate
(cont’)

The data transfer rate of given
computer system depends on
communication ports incorporated into
that system

IBM PC/XT could transfer data at the rate
of 100 to 9600 bps
Pentium-based PCs transfer data at rates as
high as 56K bps
In asynchronous serial data communication,
the baud rate is limited to 100K bps

Department of Computer Science and Information Engineering
National Cheng Kung University 12HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

RS232
Standards

An interfacing standard RS232 was set
by the Electronics Industries Association
(EIA) in 1960
The standard was set long before the
advent of the TTL logic family, its input
and output voltage levels are not TTL
compatible

In RS232, a 1 is represented by -3 ~ -25 V,
while a 0 bit is +3 ~ +25 V, making -3 to
+3 undefined

Department of Computer Science and Information Engineering
National Cheng Kung University 13HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

RS232
Standards

(cont’)

RS232 DB-25 Pins

Transmit signal element timing24Secondary data carrier detect 12

Data signal rate select 23Unassigned 11

Ring indicator (RI)22Reserved for data testing9/10

Unassigned 25Secondary clear to send13

Signal quality detector21Data carrier detect (-DCD)8

Data terminal ready (-DTR)20Signal ground (GND)7

Secondary receive data19Data set ready (-DSR)6

Unassigned 18Clear to send (-CTS)5

Receive signal element timing17Request to send (-RTS)4

Secondary receive data16Received data (RxD)3

Transmitted signal element timing15Transmitted data (TxD)2

Secondary transmitted data14Protective ground1

DescriptionPinDescriptionPin

RS232 Connector DB-25

Department of Computer Science and Information Engineering
National Cheng Kung University 14HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

RS232
Standards

(cont’)

RS232 Connector DB-9

Ring indicator (RI)9

Clear to send (-CTS)8

Request to send (-RTS)7

Data set ready (-DSR)6

Signal ground (GND)5

Data terminal ready (DTR)4

Transmitted data (TxD)3

Received data (RxD)2

Data carrier detect (-DCD)1

DescriptionPin

RS232 DB-9 Pins

Since not all pins are used in PC cables,
IBM introduced the DB-9 version of the
serial I/O standard

Department of Computer Science and Information Engineering
National Cheng Kung University 15HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

Data
Communication
Classification

Current terminology classifies data
communication equipment as

DTE (data terminal equipment) refers to
terminal and computers that send and
receive data
DCE (data communication equipment)
refers to communication equipment, such
as modems

The simplest connection between a PC
and microcontroller requires a minimum
of three pins, TxD, RxD, and ground

TxD

RxD

TxD

RxD

DTE DTE

ground

Null modem connection

Department of Computer Science and Information Engineering
National Cheng Kung University 16HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

RS232 Pins

DTR (data terminal ready)
When terminal is turned on, it sends out
signal DTR to indicate that it is ready for
communication

DSR (data set ready)
When DCE is turned on and has gone
through the self-test, it assert DSR to
indicate that it is ready to communicate

RTS (request to send)
When the DTE device has byte to transmit,
it assert RTS to signal the modem that it
has a byte of data to transmit

CTS (clear to send)
When the modem has room for storing the
data it is to receive, it sends out signal CTS
to DTE to indicate that it can receive the
data now

Department of Computer Science and Information Engineering
National Cheng Kung University 17HANEL

BASICS OF
SERIAL

COMMUNICA-
TION

RS232 Pins
(cont’)

DCD (data carrier detect)
The modem asserts signal DCD to inform
the DTE that a valid carrier has been
detected and that contact between it and
the other modem is established

RI (ring indicator)
An output from the modem and an input to
a PC indicates that the telephone is ringing
It goes on and off in synchronous with the
ringing sound

Department of Computer Science and Information Engineering
National Cheng Kung University 18HANEL

8051
CONNECTION

TO RS232

A line driver such as the MAX232 chip is
required to convert RS232 voltage
levels to TTL levels, and vice versa
8051 has two pins that are used
specifically for transferring and
receiving data serially

These two pins are called TxD and RxD and
are part of the port 3 group (P3.0 and P3.1)
These pins are TTL compatible; therefore,
they require a line driver to make them
RS232 compatible

Department of Computer Science and Information Engineering
National Cheng Kung University 19HANEL

8051
CONNECTION

TO RS232

MAX232

We need a line driver (voltage
converter) to convert the R232’s signals
to TTL voltage levels that will be
acceptable to 8051’s TxD and RxD pins

MAX232 has two
sets of line drivers

MAX232 requires
four capacitors

MAX232
8051

C3
+

Vcc

C4
+

16 2

6

1

3
4

5

+
C1

+
C2

T1in T1out

R1in

T2out

R2int

R1out

T2in

R2out

14

13

7

8

11

12

10

9

RS232 sideTTL side 15

MAX232

DB-9

11 11

10 12

14

13

2

3

5
P3.1
TxD

P3.0
RxD

Department of Computer Science and Information Engineering
National Cheng Kung University 20HANEL

8051
CONNECTION

TO RS232

MAX233

To save board space, some designers
use MAX233 chip from Maxim

MAX233 performs the same job as MAX232
but eliminates the need for capacitors
Notice that MAX233 and MAX232 are not
pin compatible

MAX233
8051

Vcc

7

11

15

13

14

12

17

T1in T1out

R1in

T2out

R2int

R1out

T2in

R2out

5

4

18

19

2

3

1

20

RS232 sideTTL side 6

MAX233

DB-9

11 2

10 3

5

4

2

3

5
P3.1
TxD

P3.0
RxD

16

10

9

Department of Computer Science and Information Engineering
National Cheng Kung University 21HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

To allow data transfer between the PC
and an 8051 system without any error,
we must make sure that the baud rate
of 8051 system matches the baud rate
of the PC’s COM port
Hyperterminal function supports baud
rates much higher than listed below

19200
9600
4800
2400
1200
600

300

150
110

PC Baud Rates

Baud rates supported by
486/Pentium IBM PC BIOS

Department of Computer Science and Information Engineering
National Cheng Kung University 22HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

(cont’)

With XTAL = 11.0592 MHz, find the TH1 value needed to have the
following baud rates. (a) 9600 (b) 2400 (c) 1200

Solution:
The machine cycle frequency of 8051 = 11.0592 / 12 = 921.6 kHz,
and 921.6 kHz / 32 = 28,800 Hz is frequency by UART to timer 1 to
set baud rate.
(a) 28,800 / 3 = 9600 where -3 = FD (hex) is loaded into TH1
(b) 28,800 / 12 = 2400 where -12 = F4 (hex) is loaded into TH1
(c) 28,800 / 24 = 1200 where -24 = E8 (hex) is loaded into TH1

Notice that dividing 1/12 of the crystal frequency by 32 is the default
value upon activation of the 8051 RESET pin.

E8
F4
FA
FD

TH1 (Hex)

-24
-12
-6
-3

TH1 (Decimal)

1200
2400
4800
9600

Baud Rate

TF is set to 1 every 12
ticks, so it functions as
a frequency divider

XTAL
oscillator ÷ 12 ÷ 32

By UART

11.0592 MHz

Machine cycle freq

921.6 kHz

28800 Hz

To timer 1
To set the
Baud rate

Department of Computer Science and Information Engineering
National Cheng Kung University 23HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

SBUF Register

SBUF is an 8-bit register used solely for
serial communication

For a byte data to be transferred via the
TxD line, it must be placed in the SBUF
register

The moment a byte is written into SBUF, it is
framed with the start and stop bits and
transferred serially via the TxD line

SBUF holds the byte of data when it is
received by 8051 RxD line

When the bits are received serially via RxD, the
8051 deframes it by eliminating the stop and
start bits, making a byte out of the data received,
and then placing it in SBUF

MOV SBUF,#’D’ ;load SBUF=44h, ASCII for ‘D’
MOV SBUF,A ;copy accumulator into SBUF
MOV A,SBUF ;copy SBUF into accumulator

Department of Computer Science and Information Engineering
National Cheng Kung University 24HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

SCON Register

SCON is an 8-bit register used to
program the start bit, stop bit, and data
bits of data framing, among other
things

SM0 SCON.7 Serial port mode specifier
SM1 SCON.6 Serial port mode specifier
SM2 SCON.5 Used for multiprocessor communication
REN SCON.4 Set/cleared by software to enable/disable reception
TB8 SCON.3 Not widely used
RB8 SCON.2 Not widely used
TI SCON.1 Transmit interrupt flag. Set by HW at the

begin of the stop bit mode 1. And cleared by SW
RI SCON.0 Receive interrupt flag. Set by HW at the

begin of the stop bit mode 1. And cleared by SW

Note: Make SM2, TB8, and RB8 =0

RITIRB8TB8RENSM2SM1SM0

Department of Computer Science and Information Engineering
National Cheng Kung University 25HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

SCON Register
(cont’)

SM0, SM1
They determine the framing of data by
specifying the number of bits per character,
and the start and stop bits

SM2
This enables the multiprocessing capability
of the 8051

Serial Mode 3

Serial Mode 2

Serial Mode 1, 8-bit data,
1 stop bit, 1 start bit

Serial Mode 0

1

0

1

0

SM1

1

1

0

0

SM0

Only mode 1 is
of interest to us

Department of Computer Science and Information Engineering
National Cheng Kung University 26HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

SCON Register
(cont’)

REN (receive enable)
It is a bit-adressable register

When it is high, it allows 8051 to receive data on
RxD pin
If low, the receiver is disable

TI (transmit interrupt)
When 8051 finishes the transfer of 8-bit
character

It raises TI flag to indicate that it is ready to
transfer another byte
TI bit is raised at the beginning of the stop bit

RI (receive interrupt)
When 8051 receives data serially via RxD, it
gets rid of the start and stop bits and
places the byte in SBUF register

It raises the RI flag bit to indicate that a byte
has been received and should be picked up
before it is lost
RI is raised halfway through the stop bit

Department of Computer Science and Information Engineering
National Cheng Kung University 27HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Programming
Serial Data
Transmitting

In programming the 8051 to transfer
character bytes serially
1. TMOD register is loaded with the value

20H, indicating the use of timer 1 in mode
2 (8-bit auto-reload) to set baud rate

2. The TH1 is loaded with one of the values
to set baud rate for serial data transfer

3. The SCON register is loaded with the value
50H, indicating serial mode 1, where an 8-
bit data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1
5. TI is cleared by CLR TI instruction
6. The character byte to be transferred

serially is written into SBUF register
7. The TI flag bit is monitored with the use of

instruction JNB TI,xx to see if the
character has been transferred completely

8. To transfer the next byte, go to step 5

Department of Computer Science and Information Engineering
National Cheng Kung University 28HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Programming
Serial Data
Transmitting

(cont’)

Write a program for the 8051 to transfer letter “A” serially at 4800
baud, continuously.

Solution:
MOV TMOD,#20H ;timer 1,mode 2(auto reload)
MOV TH1,#-6 ;4800 baud rate
MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1

AGAIN: MOV SBUF,#”A” ;letter “A” to transfer
HERE: JNB TI,HERE ;wait for the last bit

CLR TI ;clear TI for next char
SJMP AGAIN ;keep sending A

Department of Computer Science and Information Engineering
National Cheng Kung University 29HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Programming
Serial Data
Transmitting

(cont’)

Write a program for the 8051 to transfer “YES” serially at 9600
baud, 8-bit data, 1 stop bit, do this continuously

Solution:
MOV TMOD,#20H ;timer 1,mode 2(auto reload)
MOV TH1,#-3 ;9600 baud rate
MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1

AGAIN: MOV A,#”Y” ;transfer “Y”
ACALL TRANS
MOV A,#”E” ;transfer “E”
ACALL TRANS
MOV A,#”S” ;transfer “S”
ACALL TRANS
SJMP AGAIN ;keep doing it

;serial data transfer subroutine
TRANS: MOV SBUF,A ;load SBUF
HERE: JNB TI,HERE ;wait for the last bit

CLR TI ;get ready for next byte
RET

Department of Computer Science and Information Engineering
National Cheng Kung University 30HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Importance of
TI Flag

The steps that 8051 goes through in
transmitting a character via TxD
1. The byte character to be transmitted is

written into the SBUF register
2. The start bit is transferred
3. The 8-bit character is transferred on bit at

a time
4. The stop bit is transferred

It is during the transfer of the stop bit that
8051 raises the TI flag, indicating that the last
character was transmitted

5. By monitoring the TI flag, we make sure
that we are not overloading the SBUF

If we write another byte into the SBUF before
TI is raised, the untransmitted portion of the
previous byte will be lost

6. After SBUF is loaded with a new byte, the
TI flag bit must be forced to 0 by CLR TI
in order for this new byte to be transferred

Department of Computer Science and Information Engineering
National Cheng Kung University 31HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Importance of
TI Flag
(cont’)

By checking the TI flag bit, we know
whether or not the 8051 is ready to
transfer another byte

It must be noted that TI flag bit is raised by
8051 itself when it finishes data transfer
It must be cleared by the programmer with
instruction CLR TI
If we write a byte into SBUF before the TI
flag bit is raised, we risk the loss of a
portion of the byte being transferred

The TI bit can be checked by
The instruction JNB TI,xx
Using an interrupt

Department of Computer Science and Information Engineering
National Cheng Kung University 32HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Programming
Serial Data
Receiving

In programming the 8051 to receive
character bytes serially
1. TMOD register is loaded with the value

20H, indicating the use of timer 1 in mode
2 (8-bit auto-reload) to set baud rate

2. TH1 is loaded to set baud rate
3. The SCON register is loaded with the value

50H, indicating serial mode 1, where an 8-
bit data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1
5. RI is cleared by CLR RI instruction
6. The RI flag bit is monitored with the use of

instruction JNB RI,xx to see if an entire
character has been received yet

7. When RI is raised, SBUF has the byte, its
contents are moved into a safe place

8. To receive the next character, go to step 5

Department of Computer Science and Information Engineering
National Cheng Kung University 33HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Programming
Serial Data
Receiving

(cont’)

Write a program for the 8051 to receive bytes of data serially, and
put them in P1, set the baud rate at 4800, 8-bit data, and 1 stop bit

Solution:
MOV TMOD,#20H ;timer 1,mode 2(auto reload)
MOV TH1,#-6 ;4800 baud rate
MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1

HERE: JNB RI,HERE ;wait for char to come in
MOV A,SBUF ;saving incoming byte in A
MOV P1,A ;send to port 1
CLR RI ;get ready to receive next

;byte
SJMP HERE ;keep getting data

Department of Computer Science and Information Engineering
National Cheng Kung University 34HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Programming
Serial Data
Receiving

(cont’)

Example 10-5
Assume that the 8051 serial port is connected to the COM port of
IBM PC, and on the PC, we are using the terminal.exe program to
send and receive data serially. P1 and P2 of the 8051 are connected
to LEDs and switches, respectively. Write an 8051 program to (a)
send to PC the message “We Are Ready”, (b) receive any data send
by PC and put it on LEDs connected to P1, and (c) get data on
switches connected to P2 and send it to PC serially. The program
should perform part (a) once, but parts (b) and (c) continuously, use
4800 baud rate.

Solution:
ORG 0
MOV P2,#0FFH ;make P2 an input port
MOV TMOD,#20H ;timer 1, mode 2
MOV TH1,#0FAH ;4800 baud rate
MOV SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1
MOV DPTR,#MYDATA ;load pointer for message

H_1: CLR A
MOV A,@A+DPTR ;get the character

...

Department of Computer Science and Information Engineering
National Cheng Kung University 35HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Programming
Serial Data
Receiving

(cont’)

Example 10-5 (cont’)

JZ B_1 ;if last character get out
ACALL SEND ;otherwise call transfer
INC DPTR ;next one
SJMP H_1 ;stay in loop

B_1: MOV a,P2 ;read data on P2
ACALL SEND ;transfer it serially
ACALL RECV ;get the serial data
MOV P1,A ;display it on LEDs
SJMP B_1 ;stay in loop indefinitely

;----serial data transfer. ACC has the data------
SEND: MOV SBUF,A ;load the data
H_2: JNB TI,H_2 ;stay here until last bit

;gone
CLR TI ;get ready for next char
RET ;return to caller

;----Receive data serially in ACC----------------
RECV: JNB RI,RECV ;wait here for char

MOV A,SBUF ;save it in ACC
CLR RI ;get ready for next char
RET ;return to caller

...

Department of Computer Science and Information Engineering
National Cheng Kung University 36HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Programming
Serial Data
Receiving

(cont’)

Example 10-5 (cont’)

;-----The message---------------
MYDATA: DB “We Are Ready”,0

END

TxD

RxD

P1

P2

To PC

COM Port

LED

SW

8051

Department of Computer Science and Information Engineering
National Cheng Kung University 37HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Importance of
RI Flag

In receiving bit via its RxD pin, 8051
goes through the following steps
1. It receives the start bit

Indicating that the next bit is the first bit of the
character byte it is about to receive

2. The 8-bit character is received one bit at
time

3. The stop bit is received
When receiving the stop bit 8051 makes RI = 1,
indicating that an entire character byte has
been received and must be picked up before it
gets overwritten by an incoming character

Department of Computer Science and Information Engineering
National Cheng Kung University 38HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Importance of
RI Flag
(cont’)

(cont’)

4. By checking the RI flag bit when it is
raised, we know that a character has been
received and is sitting in the SBUF register

We copy the SBUF contents to a safe place in
some other register or memory before it is lost

5. After the SBUF contents are copied into a
safe place, the RI flag bit must be forced
to 0 by CLR RI in order to allow the next
received character byte to be placed in
SBUF

Failure to do this causes loss of the received
character

Department of Computer Science and Information Engineering
National Cheng Kung University 39HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Importance of
RI Flag
(cont’)

By checking the RI flag bit, we know
whether or not the 8051 received a
character byte

If we failed to copy SBUF into a safe place,
we risk the loss of the received byte
It must be noted that RI flag bit is raised by
8051 when it finish receive data
It must be cleared by the programmer with
instruction CLR RI
If we copy SBUF into a safe place before
the RI flag bit is raised, we risk copying
garbage

The RI bit can be checked by
The instruction JNB RI,xx
Using an interrupt

Department of Computer Science and Information Engineering
National Cheng Kung University 40HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Doubling Baud
Rate

There are two ways to increase the
baud rate of data transfer

To use a higher frequency crystal
To change a bit in the PCON register

PCON register is an 8-bit register
When 8051 is powered up, SMOD is zero
We can set it to high by software and
thereby double the baud rate

IDLPDGF0GF1------SMOD

MOV A,PCON ;place a copy of PCON in ACC
SETB ACC.7 ;make D7=1
MOV PCON,A ;changing any other bits

It is not a bit-
addressable
register

The system
crystal is fixed

Department of Computer Science and Information Engineering
National Cheng Kung University 41HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Doubling Baud
Rate
(cont’)

48002400F4-12

2400

9600

19200

SMOD=1

1200E8-24

4800FA-6

9600FD-3

SMOD=0(Hex)(Decimal)TH1

Baud Rate comparison for SMOD=0 and SMOD=1

XTAL
oscillator ÷ 12

÷ 16
SMOD = 1

Machine cycle freq

921.6 kHz 28800 Hz

To timer
1 To set
the Baud

rate÷ 32

57600 Hz11.0592 MHz

SMOD = 0

Department of Computer Science and Information Engineering
National Cheng Kung University 42HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Doubling Baud
Rate
(cont’)

Example 10-6
Assume that XTAL = 11.0592 MHz for the following program,
state (a) what this program does, (b) compute the frequency used
by timer 1 to set the baud rate, and (c) find the baud rate of the data
transfer.

MOV A,PCON ;A=PCON
MOV ACC.7 ;make D7=1
MOV PCON,A ;SMOD=1, double baud rate

;with same XTAL freq.
MOV TMOD,#20H ;timer 1, mode 2
MOV TH1,-3 ;19200 (57600/3 =19200)
MOV SCON,#50H ;8-bit data, 1 stop bit, RI

;enabled
SETB TR1 ;start timer 1
MOV A,#”B” ;transfer letter B

A_1: CLR TI ;make sure TI=0
MOV SBUF,A ;transfer it

H_1: JNB TI,H_1 ;stay here until the last
;bit is gone

SJMP A_1 ;keep sending “B” again

Department of Computer Science and Information Engineering
National Cheng Kung University 43HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Doubling Baud
Rate
(cont’)

Example 10-6 (cont’)

Solution:
(a) This program transfers ASCII letter B (01000010

binary) continuously
(b) With XTAL = 11.0592 MHz and SMOD = 1 in the

above program, we have:

11.0592 / 12 = 921.6 kHz machine cycle frequency.
921.6 / 16 = 57,600 Hz frequency used by timer 1
to set the baud rate.
57600 / 3 = 19,200, the baud rate.

Find the TH1 value (in both decimal and hex) to set the baud rate
to each of the following. (a) 9600 (b) 4800 if SMOD=1. Assume
that XTAL 11.0592 MHz

Solution:
With XTAL = 11.0592 and SMOD = 1, we have timer frequency =
57,600 Hz.
(a) 57600 / 9600 = 6; so TH1 = -6 or TH1 = FAH
(b) 57600 / 4800 = 12; so TH1 = -12 or TH1 = F4H

Department of Computer Science and Information Engineering
National Cheng Kung University 44HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Doubling Baud
Rate
(cont’)

Example 10-8
Find the baud rate if TH1 = -2, SMOD = 1, and XTAL = 11.0592
MHz. Is this baud rate supported by IBM compatible PCs?

Solution:
With XTAL = 11.0592 and SMOD = 1, we have timer frequency =
57,600 Hz. The baud rate is 57,600/2 = 28,800. This baud rate is
not supported by the BIOS of the PCs; however, the PC can be
programmed to do data transfer at such a speed. Also,
HyperTerminal in Windows supports this and other baud rates.

Department of Computer Science and Information Engineering
National Cheng Kung University 45HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Doubling Baud
Rate
(cont’)

Example 10-10
Write a program to send the message “The Earth is but One
Country” to serial port. Assume a SW is connected to pin P1.2.
Monitor its status and set the baud rate as follows:
SW = 0, 4800 baud rate
SW = 1, 9600 baud rate
Assume XTAL = 11.0592 MHz, 8-bit data, and 1 stop bit.

Solution:
SW BIT P1.2
ORG 0H ;starting position

MAIN:
MOV TMOD,#20H
MOV TH1,#-6 ;4800 baud rate (default)
MOV SCON,#50H
SETB TR1
SETB SW ;make SW an input

S1: JNB SW,SLOWSP ;check SW status
MOV A,PCON ;read PCON
SETB ACC.7 ;set SMOD high for 9600
MOV PCON,A ;write PCON
SJMP OVER ;send message

.....

Department of Computer Science and Information Engineering
National Cheng Kung University 46HANEL

SERIAL
COMMUNICA-

TION
PROGRAMMING

Doubling Baud
Rate
(cont’)

.....

SLOWSP:
MOV A,PCON ;read PCON
SETB ACC.7 ;set SMOD low for 4800
MOV PCON,A ;write PCON

OVER: MOV DPTR,#MESS1 ;load address to message
FN: CLR A

MOVC A,@A+DPTR ;read value
JZ S1 ;check for end of line
ACALL SENDCOM ;send value to serial port
INC DPTR ;move to next value
SJMP FN ;repeat

;------------
SENDCOM:

MOV SBUF,A ;place value in buffer
HERE: JNB TI,HERE ;wait until transmitted

CLR TI ;clear
RET ;return

;------------
MESS1: DB “The Earth is but One Country”,0

END

Department of Computer Science and Information Engineering
National Cheng Kung University 47HANEL

PROGRAMMING
THE SECOND
SERIAL PORT

Many new generations of 8051
microcontroller come with two serial
ports, like DS89C4x0 and DS80C320

The second serial port of DS89C4x0 uses
pins P1.2 and P1.3 for the Rx and Tx lines
The second serial port uses some reserved
SFR addresses for the SCON and SBUF

There is no universal agreement among the
makers as to which addresses should be used

– The SFR addresses of C0H and C1H are set
aside for SBUF and SCON of DS89C4x0

The DS89C4x0 technical documentation refers
to these registers as SCON1 and SBUF1

The first ones are designated as SCON0
and SBUF0

Department of Computer Science and Information Engineering
National Cheng Kung University 48HANEL

PROGRAMMING
THE SECOND
SERIAL PORT

(cont’)

DS89C4x0
(89C420
89C430
89C440
89C450)

RST

(RXD) P3.0

(TXD) P3.1

(-INT0) P3.2

(-INT1) P3.3

(T0) P3.4

(T1) P3.5

(-WR) P3.6

(-RD) P3.7

XTAL2

XTAL1

GND

Vcc

P0.0 (AD0)

P0.1 (AD1)

P0.2 (AD2)

P0.3 (AD3)

P0.4 (AD4)

P0.5 (AD5)

P0.6 (AD6)

P0.7 (AD7)

-EA/VPP

ALE/-PROG

-PSEN

P2.7 (A15)

P2.6 (A14)

P2.5 (A13)

P2.4 (A12)

P2.3 (A11)

P2.2 (A10)

P2.1 (A9)

P2.0 (A8)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

DS89C4x0 pin diagram

(T2) P1.0

(T2EX) P1.1

(RXD1) P1.2

(TXD1) P1.3

(INT2) P1.4

(-INT3) P1.5

(INT4) P1.6

(-INT5) P1.7

Department of Computer Science and Information Engineering
National Cheng Kung University 49HANEL

PROGRAMMING
THE SECOND
SERIAL PORT

(cont’)

PCON = 87HPCON = 87HPCON

TCON0 = 88HTCON0 = 88HTCON

TH1 = 8DHTH1 = 8DHTH

TL1 = 8BHTL1 = 8BHTL

SBUF1 = C1HSBUF0 = 99HSBUF

SCON1 = C0HSCON0 = 98HSCON

Second Serial PortFirst Serial PortSFR
(byte address)

SFR Byte Addresses for DS89C4x0 Serial Ports

Department of Computer Science and Information Engineering
National Cheng Kung University 50HANEL

PROGRAMMING
THE SECOND
SERIAL PORT

(cont’)

Upon reset, DS89c4x0 uses Timer 1 for
setting baud rate of both serial ports

While each serial port has its own SCON
and SBUF registers, both ports can use
Timer1 for setting the baud rate
SBUF and SCON refer to the SFR registers
of the first serial port

Since the older 8051 assemblers do not support
this new second serial port, we need to define
them in program
To avoid confusion, in DS89C4x0 programs we
use SCON0 and SBUF0 for the first and SCON1
and SBUF1for the second serial ports

Department of Computer Science and Information Engineering
National Cheng Kung University 51HANEL

PROGRAMMING
THE SECOND
SERIAL PORT

(cont’)

Example 10-11
Write a program for the second serial port of the DS89C4x0 to
continuously transfer the letter “A” serially at 4800 baud. Use 8-bit
data and 1 stop bit. Use Timer 1.

Solution:
SBUF1 EQU 0C1H ;2nd serial SBUF addr
SCON1 EQU 0C0H ;2nd serial SCON addr
TI1 BIT 0C1H ;2nd serial TI bit addr
RI1 BIT 0C0H ;2nd serial RI bit addr
ORG 0H ;starting position

MAIN:
MOV TMOD,#20H ;COM2 uses Timer 1 on reset
MOV TH1,#-6 ;4800 baud rate
MOV SCON1,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start timer 1

AGAIN:MOV A,#”A” ;send char ‘A’
ACALL SENDCOM2
SJMP AGAIN

SENDCOM2:
MOV SBUF1,A ;COM2 has its own SBUF

HERE: JNB TI1,HERE ;COM2 has its own TI flag
CLR TI1
RET
END

Department of Computer Science and Information Engineering
National Cheng Kung University 52HANEL

PROGRAMMING
THE SECOND
SERIAL PORT

(cont’)

Example 10-14
Assume that a switch is connected to pin P2.0. Write a program to
monitor the switch and perform the following:
(a) If SW = 0, send the message “Hello” to the Serial #0 port
(b) If SW = 1, send the message “Goodbye” to the Serial #1 port.

Solution:
SCON1 EQU 0C0H
TI1 BIT 0C1H
SW1 BIT P2.0
ORG 0H ;starting position
MOV TMOD,#20H
MOV TH1,#-3 ;9600 baud rate
MOV SCON,#50H
MOV SCON1,#50H
SETB TR1
SETB SW1 ;make SW1 an input

S1: JB SW1,NEXT ;check SW1 status
MOV DPTR,#MESS1;if SW1=0 display “Hello”

FN: CLR A
MOVC A,@A+DPTR ;read value
JZ S1 ;check for end of line
ACALL SENDCOM1 ;send to serial port
INC DPTR ;move to next value
SJM FN

.....

Department of Computer Science and Information Engineering
National Cheng Kung University 53HANEL

PROGRAMMING
THE SECOND
SERIAL PORT

(cont’)

.....

NEXT: MOV DPTR,#MESS2;if SW1=1 display “Goodbye”
LN: CLR A

MOVC A,@A+DPTR ;read value
JZ S1 ;check for end of line
ACALL SENDCOM2 ;send to serial port
INC DPTR ;move to next value
SJM LN

SENDCOM1:
MOV SBUF,A ;place value in buffer

HERE: JNB TI,HERE ;wait until transmitted
CLR TI ;clear
RET

;------------
SENDCOM2:

MOV SBUF1,A ;place value in buffer
HERE1: JNB TI1,HERE1 ;wait until transmitted

CLR TI1 ;clear
RET

MESS1: DB “Hello”,0
MESS2: DB “Goodbye”,0

END

Department of Computer Science and Information Engineering
National Cheng Kung University 54HANEL

SERIAL PORT
PROGRAMMING

IN C

Transmitting
and Receiving

Data

Example 10-15
Write a C program for 8051 to transfer the letter “A” serially at 4800
baud continuously. Use 8-bit data and 1 stop bit.

Solution:
#include <reg51.h>
void main(void){
TMOD=0x20; //use Timer 1, mode 2
TH1=0xFA; //4800 baud rate
SCON=0x50;
TR1=1;
while (1) {
SBUF=‘A’; //place value in buffer
while (TI==0);
TI=0;

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University 55HANEL

SERIAL PORT
PROGRAMMING

IN C

Transmitting
and Receiving

Data
(cont’)

Example 10-16
Write an 8051 C program to transfer the message “YES” serially at
9600 baud, 8-bit data, 1 stop bit. Do this continuously.

Solution:
#include <reg51.h>
void SerTx(unsigned char);
void main(void){
TMOD=0x20; //use Timer 1, mode 2
TH1=0xFD; //9600 baud rate
SCON=0x50;
TR1=1; //start timer
while (1) {
SerTx(‘Y’);
SerTx(‘E’);
SerTx(‘S’);

}
}
void SerTx(unsigned char x){
SBUF=x; //place value in buffer
while (TI==0); //wait until transmitted
TI=0;

}

Department of Computer Science and Information Engineering
National Cheng Kung University 56HANEL

SERIAL PORT
PROGRAMMING

IN C

Transmitting
and Receiving

Data
(cont’)

Example 10-17
Program the 8051 in C to receive bytes of data serially and put them
in P1. Set the baud rate at 4800, 8-bit data, and 1 stop bit.

Solution:
#include <reg51.h>
void main(void){
unsigned char mybyte;
TMOD=0x20; //use Timer 1, mode 2
TH1=0xFA; //4800 baud rate
SCON=0x50;
TR1=1; //start timer
while (1) { //repeat forever
while (RI==0); //wait to receive
mybyte=SBUF; //save value
P1=mybyte; //write value to port
RI=0;

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University 57HANEL

SERIAL PORT
PROGRAMMING

IN C

Transmitting
and Receiving

Data
(cont’)

Example 10-19
Write an 8051 C Program to send the two messages “Normal Speed”
and “High Speed” to the serial port. Assuming that SW is connected
to pin P2.0, monitor its status and set the baud rate as follows:
SW = 0, 28,800 baud rate
SW = 1, 56K baud rate
Assume that XTAL = 11.0592 MHz for both cases.

Solution:
#include <reg51.h>
sbit MYSW=P2^0; //input switch
void main(void){
unsigned char z;
unsigned char Mess1[]=“Normal Speed”;
unsigned char Mess2[]=“High Speed”;
TMOD=0x20; //use Timer 1, mode 2
TH1=0xFF; //28800 for normal
SCON=0x50;
TR1=1; //start timer

.....

Department of Computer Science and Information Engineering
National Cheng Kung University 58HANEL

SERIAL PORT
PROGRAMMING

IN C

Transmitting
and Receiving

Data
(cont’)

.....
if(MYSW==0) {
for (z=0;z<12;z++) {

SBUF=Mess1[z]; //place value in buffer
while(TI==0); //wait for transmit
TI=0;

}
}
else {
PCON=PCON|0x80; //for high speed of 56K
for (z=0;z<10;z++) {

SBUF=Mess2[z]; //place value in buffer
while(TI==0); //wait for transmit
TI=0;

}
}

}

Department of Computer Science and Information Engineering
National Cheng Kung University 59HANEL

SERIAL PORT
PROGRAMMING

IN C

C Compilers
and the Second

Serial Port

Example 10-20
Write a C program for the DS89C4x0 to transfer the letter “A” serially
at 4800 baud continuously. Use the second serial port with 8-bit data
and 1 stop bit. We can only use Timer 1 to set the baud rate.

Solution:
#include <reg51.h>
sfr SBUF1=0xC1;
sfr SCON1=0xC0;
sbit TI1=0xC1;
void main(void){
TMOD=0x20; //use Timer 1, mode 2
TH1=0xFA; //4800 baud rate
SCON=0x50; //use 2nd serial port SCON1
TR1=1; //start timer
while (1) {
SBUF1=‘A’; //use 2nd serial port SBUF1
while (TI1==0); //wait for transmit
TI1=0;

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University 60HANEL

SERIAL PORT
PROGRAMMING

IN C

C Compilers
and the Second

Serial Port

Example 10-21
Program the DS89C4x0 in C to receive bytes of data serially via the
second serial port and put them in P1. Set the baud rate at 9600, 8-bit
data and 1 stop bit. Use Timer 1 for baud rate generation.

Solution:
#include <reg51.h>
sfr SBUF1=0xC1;
sfr SCON1=0xC0;
sbit RI1=0xC0;
void main(void){
unsigned char mybyte;
TMOD=0x20; //use Timer 1, mode 2
TH1=0xFD; //9600 baud rate
SCON1=0x50; //use 2nd serial port SCON1
TR1=1; //start timer
while (1) {
while (RI1==0); //monitor RI1
mybyte=SBUF1; //use SBUF1
P2=mybyte; //place value on port
RI1=0;

}
}

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

INTERRUPTS
PROGRAMMING

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

INTERRUPTS

Interrupts vs.
Polling

An interrupt is an external or internal
event that interrupts the
microcontroller to inform it that a
device needs its service
A single microcontroller can serve
several devices by two ways

Interrupts
Whenever any device needs its service, the
device notifies the microcontroller by sending it
an interrupt signal
Upon receiving an interrupt signal, the
microcontroller interrupts whatever it is doing
and serves the device
The program which is associated with the
interrupt is called the interrupt service routine
(ISR) or interrupt handler

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

INTERRUPTS

Interrupts vs.
Polling
(cont’)

(cont’)

Polling
The microcontroller continuously monitors the
status of a given device
When the conditions met, it performs the
service
After that, it moves on to monitor the next
device until every one is serviced

Polling can monitor the status of
several devices and serve each of
them as certain conditions are met

The polling method is not efficient, since it
wastes much of the microcontroller’s time
by polling devices that do not need service
ex. JNB TF,target

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

INTERRUPTS

Interrupts vs.
Polling
(cont’)

The advantage of interrupts is that the
microcontroller can serve many
devices (not all at the same time)

Each devices can get the attention of the
microcontroller based on the assigned
priority
For the polling method, it is not possible to
assign priority since it checks all devices in
a round-robin fashion

The microcontroller can also ignore
(mask) a device request for service

This is not possible for the polling method

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

INTERRUPTS

Interrupt
Service Routine

For every interrupt, there must be an
interrupt service routine (ISR), or
interrupt handler

When an interrupt is invoked, the micro-
controller runs the interrupt service
routine
For every interrupt, there is a fixed
location in memory that holds the address
of its ISR
The group of memory locations set aside
to hold the addresses of ISRs is called
interrupt vector table

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

INTERRUPTS

Steps in
Executing an

Interrupt

Upon activation of an interrupt, the
microcontroller goes through the
following steps

1. It finishes the instruction it is executing
and saves the address of the next
instruction (PC) on the stack

2. It also saves the current status of all the
interrupts internally (i.e: not on the stack)

3. It jumps to a fixed location in memory,
called the interrupt vector table, that
holds the address of the ISR

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

INTERRUPTS

Steps in
Executing an

Interrupt
(cont’)

(cont’)

4. The microcontroller gets the address of
the ISR from the interrupt vector table
and jumps to it

It starts to execute the interrupt service
subroutine until it reaches the last instruction
of the subroutine which is RETI (return from
interrupt)

5. Upon executing the RETI instruction, the
microcontroller returns to the place
where it was interrupted

First, it gets the program counter (PC)
address from the stack by popping the top
two bytes of the stack into the PC
Then it starts to execute from that address

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

INTERRUPTS

Six Interrupts
in 8051

Six interrupts are allocated as follows
Reset – power-up reset
Two interrupts are set aside for the timers:
one for timer 0 and one for timer 1
Two interrupts are set aside for hardware
external interrupts

P3.2 and P3.3 are for the external hardware
interrupts INT0 (or EX1), and INT1 (or EX2)

Serial communication has a single
interrupt that belongs to both receive and
transfer

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

INTERRUPTS

Six Interrupts
in 8051
(cont’)

0023Serial COM (RI and TI)

001BTimer 1 (TF1)
P3.3 (13)0013External HW (INT1)

000BTimer 0 (TF0)
P3.2 (12)0003External HW (INT0)
90000Reset

PinROM Location
(hex)

Interrupt

Interrupt vector table

ORG 0 ;wake-up ROM reset location
LJMP MAIN ;by-pass int. vector table

;---- the wake-up program
ORG 30H

MAIN:
....
END

Only three bytes of ROM space
assigned to the reset pin. We put
the LJMP as the first instruction
and redirect the processor away
from the interrupt vector table.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

INTERRUPTS

Enabling and
Disabling an

Interrupt

Upon reset, all interrupts are disabled
(masked), meaning that none will be
responded to by the microcontroller if
they are activated
The interrupts must be enabled by
software in order for the
microcontroller to respond to them

There is a register called IE (interrupt
enable) that is responsible for enabling
(unmasking) and disabling (masking) the
interrupts

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

INTERRUPTS

Enabling and
Disabling an

Interrupt
(cont’)

EX0ET0EX1ET1ESET2--EA

Enables or disables external interrupt 0IE.0EX0

Enables or disables timer 0 overflow interruptIE.1ET0

Enables or disables external interrupt 1IE.2EX1

Enables or disables timer 1 overflow interruptIE.3ET1

Enables or disables the serial port interruptIE.4ES

Enables or disables timer 2 overflow or capture
interrupt (8952)

IE.5ET2

Not implemented, reserved for future useIE.6--

Disables all interruptsIE.7EA

IE (Interrupt Enable) Register

D7 D0

EA (enable all) must be set to 1 in order
for rest of the register to take effect

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

INTERRUPTS

Enabling and
Disabling an

Interrupt
(cont’)

To enable an interrupt, we take the
following steps:

1. Bit D7 of the IE register (EA) must be set
to high to allow the rest of register to
take effect

2. The value of EA
If EA = 1, interrupts are enabled and will be
responded to if their corresponding bits in IE
are high
If EA = 0, no interrupt will be responded to,
even if the associated bit in the IE register is
high

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

INTERRUPTS

Enabling and
Disabling an

Interrupt
(cont’)

Example 11-1
Show the instructions to (a) enable the serial interrupt, timer 0
interrupt, and external hardware interrupt 1 (EX1),and (b) disable
(mask) the timer 0 interrupt, then (c) show how to disable all the
interrupts with a single instruction.

Solution:

(a) MOV IE,#10010110B ;enable serial,
;timer 0, EX1

Another way to perform the same manipulation is
SETB IE.7 ;EA=1, global enable
SETB IE.4 ;enable serial interrupt
SETB IE.1 ;enable Timer 0 interrupt
SETB IE.2 ;enable EX1

(b) CLR IE.1 ;mask (disable) timer 0
;interrupt only

(c) CLR IE.7 ;disable all interrupts

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

TIMER
INTERRUPTS

The timer flag (TF) is raised when the
timer rolls over

In polling TF, we have to wait until the TF
is raised

The problem with this method is that the
microcontroller is tied down while waiting for TF
to be raised, and can not do anything else

Using interrupts solves this problem and,
avoids tying down the controller

If the timer interrupt in the IE register is
enabled, whenever the timer rolls over, TF is
raised, and the microcontroller is interrupted in
whatever it is doing, and jumps to the interrupt
vector table to service the ISR
In this way, the microcontroller can do other
until it is notified that the timer has rolled over

1 000BH
TF0 Timer 0 Interrupt Vector

Jumps to
1 001BH

TF1 Timer 1 Interrupt Vector

Jumps to

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

TIMER
INTERRUPTS

(cont’)

Example 11-2
Write a program that continuously get 8-bit data from P0 and sends it
to P1 while simultaneously creating a square wave of 200 μs period
on pin P2.1. Use timer 0 to create the square wave. Assume that
XTAL = 11.0592 MHz.

Solution:

We will use timer 0 in mode 2 (auto reload). TH0 = 100/1.085 us = 92
;--upon wake-up go to main, avoid using
;memory allocated to Interrupt Vector Table

ORG 0000H
LJMP MAIN ;by-pass interrupt vector table

;
;--ISR for timer 0 to generate square wave

ORG 000BH ;Timer 0 interrupt vector table
CPL P2.1 ;toggle P2.1 pin
RETI ;return from ISR

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

TIMER
INTERRUPTS

(cont’)

...

;--The main program for initialization
ORG 0030H ;after vector table space

MAIN: MOV TMOD,#02H ;Timer 0, mode 2
MOV P0,#0FFH ;make P0 an input port
MOV TH0,#-92 ;TH0=A4H for -92
MOV IE,#82H ;IE=10000010 (bin) enable

;Timer 0
SETB TR0 ;Start Timer 0

BACK: MOV A,P0 ;get data from P0
MOV P1,A ;issue it to P1
SJMP BACK ;keep doing it loop

;unless interrupted by TF0
END

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

TIMER
INTERRUPTS

(cont’)

Example 11-3
Rewrite Example 11-2 to create a square wave that has a high portion
of 1085 us and a low portion of 15 us. Assume XTAL=11.0592MHz.
Use timer 1.

Solution:

Since 1085 us is 1000 × 1.085 we need to use mode 1 of timer 1.

;--upon wake-up go to main, avoid using
;memory allocated to Interrupt Vector Table

ORG 0000H
LJMP MAIN ;by-pass int. vector table

;--ISR for timer 1 to generate square wave
ORG 001BH ;Timer 1 int. vector table
LJMP ISR_T1 ;jump to ISR

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

TIMER
INTERRUPTS

(cont’)

...
;--The main program for initialization

ORG 0030H ;after vector table space
MAIN: MOV TMOD,#10H ;Timer 1, mode 1

MOV P0,#0FFH ;make P0 an input port
MOV TL1,#018H ;TL1=18 low byte of -1000
MOV TH1,#0FCH ;TH1=FC high byte of -1000
MOV IE,#88H ;10001000 enable Timer 1 int
SETB TR1 ;Start Timer 1

BACK: MOV A,P0 ;get data from P0
MOV P1,A ;issue it to P1
SJMP BACK ;keep doing it

;Timer 1 ISR. Must be reloaded, not auto-reload
ISR_T1: CLR TR1 ;stop Timer 1

MOV R2,#4 ; 2MC
CLR P2.1 ;P2.1=0, start of low portion

HERE: DJNZ R2,HERE ;4x2 machine cycle 8MC
MOV TL1,#18H ;load T1 low byte value 2MC
MOV TH1,#0FCH;load T1 high byte value 2MC
SETB TR1 ;starts timer1 1MC
SETB P2.1 ;P2.1=1,back to high 1MC
RETI ;return to main
END

Low portion of the pulse is
created by 14 MC
14 x 1.085 us = 15.19 us

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

TIMER
INTERRUPTS

(cont’)

Example 11-4
Write a program to generate a square wave if 50Hz frequency on pin
P1.2. This is similar to Example 9-12 except that it uses an interrupt
for timer 0. Assume that XTAL=11.0592 MHz

Solution:
ORG 0
LJMP MAIN
ORG 000BH ;ISR for Timer 0
CPL P1.2
MOV TL0,#00
MOV TH0,#0DCH
RETI
ORG 30H

;--------main program for initialization
MAIN:MOV TM0D,#00000001B ;Timer 0, Mode 1

MOV TL0,#00
MOV TH0,#0DCH
MOV IE,#82H ;enable Timer 0 interrupt
SETB TR0

HERE:SJMP HERE
END

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

EXTERNAL
HARDWARE
INTERRUPTS

The 8051 has two external hardware
interrupts

Pin 12 (P3.2) and pin 13 (P3.3) of the 8051,
designated as INT0 and INT1, are used as
external hardware interrupts

The interrupt vector table locations 0003H and
0013H are set aside for INT0 and INT1

There are two activation levels for the
external hardware interrupts

Level trigged
Edge trigged

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

EXTERNAL
HARDWARE
INTERRUPTS

(cont’)
IE0

(TCON.1)

INT0
(Pin 3.2)

Edge-triggered

0

1

IT0 0003

Level-triggered

Activation of INT0

Activation of INT1

IE1
(TCON.3)

INT1
(Pin 3.3)

Edge-triggered

0

1

IT1 0013

Level-triggered

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Level-Triggered
Interrupt

In the level-triggered mode, INT0 and
INT1 pins are normally high

If a low-level signal is applied to them, it
triggers the interrupt
Then the microcontroller stops whatever it
is doing and jumps to the interrupt vector
table to service that interrupt
The low-level signal at the INT pin must
be removed before the execution of the
last instruction of the ISR, RETI; otherwise,
another interrupt will be generated

This is called a level-triggered or level-
activated interrupt and is the default
mode upon reset of the 8051

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Level-Triggered
Interrupt

(cont’)

Example 11-5
Assume that the INT1 pin is connected to a switch that is normally
high. Whenever it goes low, it should turn on an LED. The LED is
connected to P1.3 and is normally off. When it is turned on it should
stay on for a fraction of a second. As long as the switch is pressed low,
the LED should stay on.

Solution:
ORG 0000H
LJMP MAIN ;by-pass interrupt

;vector table
;--ISR for INT1 to turn on LED

ORG 0013H ;INT1 ISR
SETB P1.3 ;turn on LED
MOV R3,#255

BACK: DJNZ R3,BACK ;keep LED on for a while
CLR P1.3 ;turn off the LED
RETI ;return from ISR

;--MAIN program for initialization
ORG 30H

MAIN: MOV IE,#10000100B ;enable external INT 1
HERE: SJMP HERE ;stay here until get interrupted

END

to LED

Vcc

P1.3

INT1

Pressing the switch
will cause the LED
to be turned on. If
it is kept activated,
the LED stays on

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Sampling Low
Level-Triggered

Interrupt

Pins P3.2 and P3.3 are used for normal
I/O unless the INT0 and INT1 bits in
the IE register are enabled

After the hardware interrupts in the IE
register are enabled, the controller keeps
sampling the INTn pin for a low-level signal
once each machine cycle
According to one manufacturer’s data sheet,

The pin must be held in a low state until the
start of the execution of ISR
If the INTn pin is brought back to a logic high
before the start of the execution of ISR there
will be no interrupt
If INTn pin is left at a logic low after the RETI
instruction of the ISR, another interrupt will be
activated after one instruction is executed

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Sampling Low
Level-Triggered

Interrupt
(cont’)

To ensure the activation of the hardware
interrupt at the INTn pin, make sure that
the duration of the low-level signal is
around 4 machine cycles, but no more

This is due to the fact that the level-triggered
interrupt is not latched
Thus the pin must be held in a low state until
the start of the ISR execution

1 MC

4 × 1.085us
1.085us

To INT0 or
INT1 pins

4 machine cycles

note: On reset, IT0 (TCON.0) and IT1 (TCON.2) are both
low, making external interrupt level-triggered

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Edge-Triggered
Interrupt

To make INT0 and INT1 edge-
triggered interrupts, we must program
the bits of the TCON register

The TCON register holds, among other bits,
the IT0 and IT1 flag bits that determine
level- or edge-triggered mode of the
hardware interrupt

IT0 and IT1 are bits D0 and D2 of the TCON
register
They are also referred to as TCON.0 and
TCON.2 since the TCON register is bit-
addressable

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Edge-Triggered
Interrupt

(cont’)

D7 D0

IT0IE0IT1IE1TR0TF0TR1TF1

TCON (Timer/Counter) Register (Bit-addressable)

Timer 0 overflow flag. Set by
hardware when timer/counter 0
overflows. Cleared by hardware as the
processor vectors to the interrupt
service routine

TCON.5TF0

Timer 0 run control bit. Set/cleared by
software to turn timer/counter 0 on/off

TCON.4TR0

Timer 1 run control bit. Set/cleared by
software to turn timer/counter 1 on/off

TCON.6TR1

Timer 1 overflow flag. Set by
hardware when timer/counter
1 overflows. Cleared by hardware as
the processor vectors to the interrupt
service routine

TCON.7TF1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Edge-Triggered
Interrupt

(cont’)

External interrupt 0 edge flag. Set by
CPU when the external interrupt edge
(H-to-L transition) is detected. Cleared
by CPU when the interrupt is processed

TCON.1IE0

Interrupt 0 type control bit. Set/cleared
by software to specify falling edge/low-
level triggered external interrupt

TCON.0IT0

Interrupt 1 type control bit. Set/cleared
by software to specify falling edge/low-
level triggered external interrupt

TCON.2IT1

External interrupt 1 edge flag. Set by
CPU when the external interrupt edge
(H-to-L transition) is detected. Cleared
by CPU when the interrupt is processed

TCON.3IE1

TCON (Timer/Counter) Register (Bit-addressable) (cont’)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Edge-Triggered
Interrupt

(cont’)

Assume that pin 3.3 (INT1) is connected to a pulse generator, write a
program in which the falling edge of the pulse will send a high to
P1.3, which is connected to an LED (or buzzer). In other words, the
LED is turned on and off at the same rate as the pulses are applied to
the INT1 pin.

Solution:
ORG 0000H
LJMP MAIN

;--ISR for hardware interrupt INT1 to turn on LED
ORG 0013H ;INT1 ISR
SETB P1.3 ;turn on LED
MOV R3,#255

BACK: DJNZ R3,BACK ;keep the buzzer on for a while
CLR P1.3 ;turn off the buzzer
RETI ;return from ISR

;------MAIN program for initialization
ORG 30H

MAIN: SETB TCON.2 ;make INT1 edge-triggered int.
MOV IE,#10000100B ;enable External INT 1

HERE: SJMP HERE ;stay here until get interrupted
END

When the falling edge of the signal
is applied to pin INT1, the LED
will be turned on momentarily.

The on-state duration
depends on the time
delay inside the ISR
for INT1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Sampling Edge-
Triggered
Interrupt

In edge-triggered interrupts
The external source must be held high for
at least one machine cycle, and then held
low for at least one machine cycle
The falling edge of pins INT0 and INT1
are latched by the 8051 and are held by
the TCON.1 and TCON.3 bits of TCON
register

Function as interrupt-in-service flags
It indicates that the interrupt is being serviced
now and on this INTn pin, and no new interrupt
will be responded to until this service is finished

Minimum pulse duration to
detect edge-triggered
interrupts XTAL=11.0592MHz

1 MC

1.085us

1 MC

1.085us

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Sampling Edge-
Triggered
Interrupt

(cont’)

Regarding the IT0 and IT1 bits in the
TCON register, the following two points
must be emphasized

When the ISRs are finished (that is, upon
execution of RETI), these bits (TCON.1 and
TCON.3) are cleared, indicating that the
interrupt is finished and the 8051 is ready
to respond to another interrupt on that pin
During the time that the interrupt service
routine is being executed, the INTn pin is
ignored, no matter how many times it
makes a high-to-low transition

RETI clears the corresponding bit in TCON
register (TCON.1 or TCON.3)
There is no need for instruction CLR TCON.1
before RETI in the ISR associated with INT0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

EXTERNAL
HARDWARE
INTERRUPTS

Sampling Edge-
Triggered
Interrupt

(cont’)

Example 11-7
What is the difference between the RET and RETI instructions?
Explain why we can not use RET instead of RETI as the last
instruction of an ISR.

Solution:
Both perform the same actions of popping off the top two bytes of the
stack into the program counter, and marking the 8051 return to where
it left off.

However, RETI also performs an additional task of clearing the
interrupt-in-service flag, indicating that the servicing of the interrupt
is over and the 8051 now can accept a new interrupt on that pin. If
you use RET instead of RETI as the last instruction of the interrupt
service routine, you simply block any new interrupt on that pin after
the first interrupt, since the pin status would indicate that the interrupt
is still being serviced. In the cases of TF0, TF1, TCON.1, and
TCON.3, they are cleared due to the execution of RETI.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

TI (transfer interrupt) is raised when
the last bit of the framed data, the
stop bit, is transferred, indicating that
the SBUF register is ready to transfer
the next byte
RI (received interrupt) is raised when
the entire frame of data, including the
stop bit, is received

In other words, when the SBUF register
has a byte, RI is raised to indicate that the
received byte needs to be picked up
before it is lost (overrun) by new incoming
serial data

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

RI and TI Flags
and Interrupts

In the 8051 there is only one interrupt
set aside for serial communication

This interrupt is used to both send and
receive data
If the interrupt bit in the IE register (IE.4)
is enabled, when RI or TI is raised the
8051 gets interrupted and jumps to
memory location 0023H to execute the ISR
In that ISR we must examine the TI and RI
flags to see which one caused the interrupt
and respond accordingly

Serial interrupt is invoked by TI or RI flags

TI

RI
0023H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

Use of Serial
COM in 8051

The serial interrupt is used mainly for
receiving data and is never used for
sending data serially

This is like getting a telephone call in
which we need a ring to be notified
If we need to make a phone call there are
other ways to remind ourselves and there
is no need for ringing
However in receiving the phone call, we
must respond immediately no matter what
we are doing or we will miss the call

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

Use of Serial
COM in 8051

(cont’)

Example 11-8
Write a program in which the 8051 reads data from P1 and writes it to
P2 continuously while giving a copy of it to the serial COM port to be
transferred serially. Assume that XTAL=11.0592. Set the baud rate at
9600.

Solution:
ORG 0000H
LJMP MAIN
ORG 23H
LJMP SERIAL ;jump to serial int ISR
ORG 30H

MAIN: MOV P1,#0FFH ;make P1 an input port
MOV TMOD,#20H ;timer 1, auto reload
MOV TH1,#0FDH ;9600 baud rate
MOV SCON,#50H ;8-bit,1 stop, ren enabled
MOV IE,10010000B ;enable serial int.
SETB TR1 ;start timer 1

BACK: MOV A,P1 ;read data from port 1
MOV SBUF,A ;give a copy to SBUF
MOV P2,A ;send it to P2
SJMP BACK ;stay in loop indefinitely

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

Use of Serial
COM in 8051

(cont’)

...
;-----------------SERIAL PORT ISR

ORG 100H
SERIAL: JB TI,TRANS;jump if TI is high

MOV A,SBUF ;otherwise due to receive
CLR RI ;clear RI since CPU doesn’t
RETI ;return from ISR

TRANS: CLR TI ;clear TI since CPU doesn’t
RETI ;return from ISR
END

The moment a byte is written into SBUF it is framed and transferred
serially. As a result, when the last bit (stop bit) is transferred the TI is
raised, and that causes the serial interrupt to be invoked since the
corresponding bit in the IE register is high. In the serial ISR, we check
for both TI and RI since both could have invoked interrupt.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 38HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

Use of Serial
COM in 8051

(cont’)

Example 11-9
Write a program in which the 8051 gets data from P1 and sends it to
P2 continuously while incoming data from the serial port is sent to P0.
Assume that XTAL=11.0592. Set the baud rata at 9600.

Solution:
ORG 0000H
LJMP MAIN
ORG 23H
LJMP SERIAL ;jump to serial int ISR
ORG 30H

MAIN: MOV P1,#0FFH ;make P1 an input port
MOV TMOD,#20H ;timer 1, auto reload
MOV TH1,#0FDH ;9600 baud rate
MOV SCON,#50H ;8-bit,1 stop, ren enabled
MOV IE,10010000B ;enable serial int.
SETB TR1 ;start timer 1

BACK: MOV A,P1 ;read data from port 1
MOV P2,A ;send it to P2
SJMP BACK ;stay in loop indefinitely

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 39HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

Use of Serial
COM in 8051

(cont’)

...
;-----------------SERIAL PORT ISR

ORG 100H
SERIAL: JB TI,TRANS;jump if TI is high

MOV A,SBUF ;otherwise due to receive
MOV P0,A ;send incoming data to P0
CLR RI ;clear RI since CPU doesn’t
RETI ;return from ISR

TRANS: CLR TI ;clear TI since CPU doesn’t
RETI ;return from ISR
END

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 40HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

Clearing RI and
TI before RETI

Example 11-10
Write a program using interrupts to do the following:
(a) Receive data serially and sent it to P0,
(b) Have P1 port read and transmitted serially, and a copy given to

P2,
(c) Make timer 0 generate a square wave of 5kHz frequency on P0.1.
Assume that XTAL-11,0592. Set the baud rate at 4800.

Solution:
ORG 0
LJMP MAIN
ORG 000BH ;ISR for timer 0
CPL P0.1 ;toggle P0.1
RETI ;return from ISR
ORG 23H ;
LJMP SERIAL ;jump to serial interrupt ISR
ORG 30H

MAIN: MOV P1,#0FFH ;make P1 an input port
MOV TMOD,#22H;timer 1,mode 2(auto reload)
MOV TH1,#0F6H;4800 baud rate
MOV SCON,#50H;8-bit, 1 stop, ren enabled
MOV TH0,#-92 ;for 5kHZ wave

...

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 41HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

Clearing RI and
TI before RETI

(cont’)

...
MOV IE,10010010B ;enable serial int.
SETB TR1 ;start timer 1
SETB TR0 ;start timer 0

BACK: MOV A,P1 ;read data from port 1

MOV SBUF,A ;give a copy to SBUF
MOV P2,A ;send it to P2
SJMP BACK ;stay in loop indefinitely

;-----------------SERIAL PORT ISR
ORG 100H

SERIAL:JB TI,TRANS;jump if TI is high
MOV A,SBUF ;otherwise due to receive
MOV P0,A ;send serial data to P0
CLR RI ;clear RI since CPU doesn’t
RETI ;return from ISR

TRANS: CLR TI ;clear TI since CPU doesn’t
RETI ;return from ISR
END

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 42HANEL

SERIAL
COMMUNI-

CATION
INTERRUPT

Interrupt Flag
Bits

The TCON register holds four of the
interrupt flags, in the 8051 the SCON
register has the RI and TI flags

Interrupt Flag Bits

T2CON.6 (AT89C52)EXF2Timer 2

T2CON.7 (AT89C52)TF2Timer 2

SCON.1T1Serial Port

TCON.7TF1Timer 1

TCON.5TF0Timer 0

TCON.3IE1External 1

TCON.1IE0External 0

SFR Register BitFlagInterrupt

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 43HANEL

INTERRUPT
PRIORITY

When the 8051 is powered up, the
priorities are assigned according to
the following

In reality, the priority scheme is nothing
but an internal polling sequence in which
the 8051 polls the interrupts in the
sequence listed and responds accordingly

Interrupt Priority Upon Reset

(TF1)Timer Interrupt 1

(RI + TI)Serial Communication

(INT1)External Interrupt 1

(TF0)Timer Interrupt 0

(INT0)External Interrupt 0

Highest To Lowest Priority

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 44HANEL

INTERRUPT
PRIORITY

(cont’)

Example 11-11
Discuss what happens if interrupts INT0, TF0, and INT1 are
activated at the same time. Assume priority levels were set by the
power-up reset and the external hardware interrupts are edge-
triggered.

Solution:
If these three interrupts are activated at the same time, they are
latched and kept internally. Then the 8051 checks all five interrupts
according to the sequence listed in Table 11-3. If any is activated, it
services it in sequence. Therefore, when the above three interrupts
are activated, IE0 (external interrupt 0) is serviced first, then timer 0
(TF0), and finally IE1 (external interrupt 1).

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 45HANEL

INTERRUPT
PRIORITY

(cont’)

We can alter the sequence of interrupt
priority by assigning a higher priority
to any one of the interrupts by
programming a register called IP
(interrupt priority)

To give a higher priority to any of the
interrupts, we make the corresponding bit
in the IP register high
When two or more interrupt bits in the IP
register are set to high

While these interrupts have a higher priority
than others, they are serviced according to the
sequence of Table 11-13

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 46HANEL

INTERRUPT
PRIORITY

(cont’) PX0PT0PX1PT1PSPT2----

D7 D0

Interrupt Priority Register (Bit-addressable)

External interrupt 0 priority bitIP.0PX0

Timer 0 interrupt priority bit IP.1PT0

External interrupt 1 priority bitIP.2PX1

Timer 1 interrupt priority bitIP.3PT1

Serial port interrupt priority bitIP.4PS

Timer 2 interrupt priority bit (8052 only)IP.5PT2

ReservedIP.6--

ReservedIP.7--

Priority bit=1 assigns high priority
Priority bit=0 assigns low priority

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 47HANEL

INTERRUPT
PRIORITY

(cont’)

Example 11-12
(a) Program the IP register to assign the highest priority to

INT1(external interrupt 1), then
(b) discuss what happens if INT0, INT1, and TF0 are activated at the

same time. Assume the interrupts are both edge-triggered.

Solution:
(a) MOV IP,#00000100B ;IP.2=1 assign INT1 higher priority. The

instruction SETB IP.2 also will do the same thing as the above
line since IP is bit-addressable.

(b) The instruction in Step (a) assigned a higher priority to INT1 than
the others; therefore, when INT0, INT1, and TF0 interrupts are
activated at the same time, the 8051 services INT1 first, then it
services INT0, then TF0. This is due to the fact that INT1 has a
higher priority than the other two because of the instruction in
Step (a). The instruction in Step (a) makes both the INT0 and
TF0 bits in the IP register 0. As a result, the sequence in Table
11-3 is followed which gives a higher priority to INT0 over TF0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 48HANEL

INTERRUPT
PRIORITY

(cont’)

Example 11-13
Assume that after reset, the interrupt priority is set the instruction

MOV IP,#00001100B. Discuss the sequence in which the
interrupts are serviced.

Solution:
The instruction “MOV IP #00001100B” (B is for binary) and timer 1

(TF1)to a higher priority level compared with the reset of the
interrupts. However, since they are polled according to Table,
they will have the following priority.

Highest Priority External Interrupt 1 (INT1)
Timer Interrupt 1 (TF1)
External Interrupt 0 (INT0)
Timer Interrupt 0 (TF0)

Lowest Priority Serial Communication (RI+TI)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 49HANEL

INTERRUPT
PRIORITY

Interrupt inside
an Interrupt

In the 8051 a low-priority interrupt can
be interrupted by a higher-priority
interrupt but not by another low-
priority interrupt

Although all the interrupts are latched and
kept internally, no low-priority interrupt
can get the immediate attention of the
CPU until the 8051 has finished servicing
the high-priority interrupts

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 50HANEL

INTERRUPT
PRIORITY

Triggering
Interrupt by

Software

To test an ISR by way of simulation
can be done with simple instructions to
set the interrupts high and thereby
cause the 8051 to jump to the
interrupt vector table

ex. If the IE bit for timer 1 is set, an
instruction such as SETB TF1 will
interrupt the 8051 in whatever it is doing
and will force it to jump to the interrupt
vector table

We do not need to wait for timer 1 go roll over
to have an interrupt

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 51HANEL

PROGRAMMING
IN C

The 8051 compiler have extensive
support for the interrupts

They assign a unique number to each of
the 8051 interrupts

It can assign a register bank to an ISR
This avoids code overhead due to the pushes
and pops of the R0 – R7 registers

5(TF2)Timer 2 (8052 only)

4(RI + TI)Serial Communication

(TF1)

(INT1)

(TF0)

(INT0)

Name

3Timer Interrupt 1

2External Interrupt 1

1Timer Interrupt 0

0External Interrupt 0

NumbersInterrupt

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 52HANEL

PROGRAMMING
IN C
(cont’)

Example 11-14
Write a C program that continuously gets a single bit of data from P1.7
and sends it to P1.0, while simultaneously creating a square wave of
200 μs period on pin P2.5. Use Timer 0 to create the square wave.
Assume that XTAL = 11.0592 MHz.

Solution:
We will use timer 0 mode 2 (auto-reload). One half of the period is
100 μs. 100/1.085 μs = 92, and TH0 = 256 - 92 = 164 or A4H
#include <reg51.h>
sbit SW =P1^7;
sbit IND =P1^0;
sbit WAVE =P2^5;
void timer0(void) interrupt 1 {
WAVE=~WAVE; //toggle pin

}
void main() {
SW=1; //make switch input
TMOD=0x02;
TH0=0xA4; //TH0=-92
IE=0x82; //enable interrupt for timer 0
while (1) {
IND=SW; //send switch to LED

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 53HANEL

PROGRAMMING
IN C
(cont’)

Example 11-16
Write a C program using interrupts to do the following:
(a) Receive data serially and send it to P0
(b) Read port P1, transmit data serially, and give a copy to P2
(c) Make timer 0 generate a square wave of 5 kHz frequency on P0.1
Assume that XTAL = 11.0592 MHz. Set the baud rate at 4800.

Solution:
#include <reg51.h>
sbit WAVE =P0^1;

void timer0() interrupt 1 {
WAVE=~WAVE; //toggle pin

}

void serial0() interrupt 4 {
if (TI==1) {
TI=0; //clear interrupt

}
else {
P0=SBUF; //put value on pins
RI=0; //clear interrupt

}
}
.....

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 54HANEL

PROGRAMMING
IN C
(cont’)

.....

void main() {
unsigned char x;
P1=0xFF; //make P1 an input
TMOD=0x22;
TH1=0xF6; //4800 baud rate
SCON=0x50;
TH0=0xA4; //5 kHz has T=200us
IE=0x92; //enable interrupts
TR1=1; //start timer 1
TR0=1; //start timer 0
while (1) {
x=P1; //read value from pins
SBUF=x; //put value in buffer
P2=x; //write value to pins

}
}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 55HANEL

PROGRAMMING
IN C
(cont’)

Example 11-17
Write a C program using interrupts to do the following:
(a) Generate a 10 KHz frequency on P2.1 using T0 8-bit auto-reload
(b) Use timer 1 as an event counter to count up a 1-Hz pulse and
display it on P0. The pulse is connected to EX1.
Assume that XTAL = 11.0592 MHz. Set the baud rate at 9600.

Solution:
#include <reg51.h>
sbit WAVE =P2^1;
Unsigned char cnt;

void timer0() interrupt 1 {
WAVE=~WAVE; //toggle pin

}

void timer1() interrupt 3 {
cnt++; //increment counter
P0=cnt; //display value on pins

}
.....

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 56HANEL

PROGRAMMING
IN C
(cont’)

.....

void main() {
cnt=0; //set counter to 0
TMOD=0x42;
TH0=0x-46; //10 KHz
IE=0x86; //enable interrupts
TR0=1; //start timer 0
while (1); //wait until interrupted

}

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University

Chung-Ping Young
楊中平

8031/51 INTERFACING TO
EXTERNAL MEMORY

Department of Computer Science and Information Engineering
National Cheng Kung University 2HANEL

SEMI-
CONDUCTOR

MEMORY

Memory
Capacity

The number of bits that a
semiconductor memory chip can store
is called chip capacity

It can be in units of Kbits (kilobits), Mbits
(megabits), and so on

This must be distinguished from the
storage capacity of computer systems

While the memory capacity of a memory
IC chip is always given bits, the memory
capacity of a computer system is given in
bytes

16M memory chip – 16 megabits
A computer comes with 16M memory – 16
megabytes

Department of Computer Science and Information Engineering
National Cheng Kung University 3HANEL

SEMI-
CONDUCTOR

MEMORY

Memory
Organization

Memory chips are organized into a
number of locations within the IC

Each location can hold 1 bit, 4 bits, 8 bits,
or even 16 bits, depending on how it is
designed internally

The number of locations within a memory IC
depends on the address pins
The number of bits that each location can hold
is always equal to the number of data pins

To summarize
A memory chip contain 2x location, where x
is the number of address pins
Each location contains y bits, where y is
the number of data pins on the chip
The entire chip will contain 2x × y bits

Department of Computer Science and Information Engineering
National Cheng Kung University 4HANEL

SEMI-
CONDUCTOR

MEMORY

Speed

One of the most important
characteristics of a memory chip is the
speed at which its data can be
accessed

To access the data, the address is
presented to the address pins, the READ
pin is activated, and after a certain amount
of time has elapsed, the data shows up at
the data pins
The shorter this elapsed time, the better,
and consequently, the more expensive the
memory chip
The speed of the memory chip is
commonly referred to as its access time

Department of Computer Science and Information Engineering
National Cheng Kung University 5HANEL

SEMI-
CONDUCTOR

MEMORY

Speed
(cont’)

Example
A given memory chip has 12 address pins and 4 data pins. Find:
(a) The organization, and (b) the capacity.

Solution:
(a) This memory chip has 4096 locations (212 = 4096), and

each location can hold 4 bits of data. This gives an
organization of 4096 × 4, often represented as 4K × 4.

(b) The capacity is equal to 16K bits since there is a total of
4K locations and each location can hold 4 bits of data.

Example
A 512K memory chip has 8 pins for data. Find:
(a) The organization, and (b) the number of address pins for

this memory chip.

Solution:
(a) A memory chip with 8 data pins means that each location

within the chip can hold 8 bits of data. To find the number
of locations within this memory chip, divide the capacity
by the number of data pins. 512K/8 = 64K; therefore, the
organization for this memory chip is 64K × 8

(b) The chip has 16 address lines since 216 = 64K

Department of Computer Science and Information Engineering
National Cheng Kung University 6HANEL

SEMI-
CONDUCTOR

MEMORY

ROM
(Read-only
Memory)

ROM is a type of memory that does not
lose its contents when the power is
turned off

ROM is also called nonvolatile memory

There are different types of read-only
memory

PROM
EPROM
EEPROM
Flash EPROM
Mask ROM

Department of Computer Science and Information Engineering
National Cheng Kung University 7HANEL

SEMI-
CONDUCTOR

MEMORY

ROM

PROM
(Programmable

ROM)

PROM refers to the kind of ROM that
the user can burn information into

PROM is a user-programmable memory
For every bit of the PROM, there exists a
fuse

If the information burned into PROM is
wrong, that PROM must be discarded
since its internal fuses are blown
permanently

PROM is also referred to as OTP (one-time
programmable)
Programming ROM, also called burning
ROM, requires special equipment called a
ROM burner or ROM programmer

Department of Computer Science and Information Engineering
National Cheng Kung University 8HANEL

SEMI-
CONDUCTOR

MEMORY

ROM

EPROM (Erasable
Programmable

ROM)

EPROM was invented to allow making
changes in the contents of PROM after
it is burned

In EPROM, one can program the memory
chip and erase it thousands of times

A widely used EPROM is called UV-
EPROM

UV stands for ultra-violet
The only problem with UV-EPROM is that
erasing its contents can take up to 20
minutes
All UV-EPROM chips have a window that is
used to shine ultraviolet (UV) radiation to
erase its contents

Department of Computer Science and Information Engineering
National Cheng Kung University 9HANEL

SEMI-
CONDUCTOR

MEMORY

ROM

EPROM (Erasable
Programmable

ROM)
(cont’)

To program a UV-EPROM chip, the
following steps must be taken:

Its contents must be erased
To erase a chip, it is removed from its socket on
the system board and placed in EPROM erasure
equipment to expose it to UV radiation for 15-20
minutes

Program the chip
To program a UV-EPROM chip, place it in the
ROM burner
To burn code or data into EPROM, the ROM
burner uses 12.5 volts, Vpp in the UV-EPROM
data sheet or higher, depending on the EPROM
type
Place the chip back into its system board socket

Department of Computer Science and Information Engineering
National Cheng Kung University 10HANEL

SEMI-
CONDUCTOR

MEMORY

ROM

EPROM (Erasable
Programmable

ROM)
(cont’)

There is an EPROM programmer
(burner), and there is also separate
EPROM erasure equipment
The major disadvantage of UV-EPROM,
is that it cannot be programmed while
in the system board
Notice the pattern of the IC numbers
Ex. 27128-25 refers to UV-EPROM that has a capacity

of 128K bits and access time of 250 nanoseconds
27xx always refers to UV-EPROM chips

For ROM chip 27128, find the number of data and address pins.

Solution:
The 27128 has a capacity of 128K bits. It has 16K × 8
organization (all ROMs have 8 data pins), which indicates that
there are 8 pins for data, and 14 pins for address (214 = 16K)

Department of Computer Science and Information Engineering
National Cheng Kung University 11HANEL

SEMI-
CONDUCTOR

MEMORY

ROM

EEPROM
(Electrically

Erasable
Programmable

ROM)

EEPROM has several advantage over
EPROM

Its method of erasure is electrical and
therefore instant, as opposed to the 20-
minute erasure time required for UV-
EPROM
One can select which byte to be erased, in
contrast to UV-EPROM, in which the entire
contents of ROM are erased
One can program and erase its contents
while it is still in the system board

EEPROM does not require an external erasure
and programming device
The designer incorporate into the system board
the circuitry to program the EEPROM

Department of Computer Science and Information Engineering
National Cheng Kung University 12HANEL

SEMI-
CONDUCTOR

MEMORY

ROM

Flash Memory
EPROM

Flash EPROM has become a popular
user-programmable memory chip since
the early 1990s

The process of erasure of the entire
contents takes less than a second, or might
say in a flash

The erasure method is electrical
It is commonly called flash memory

The major difference between EEPROM
and flash memory is

Flash memory’s contents are erased, then the
entire device is erased

– There are some flash memories are recently
made so that the erasure can be done block
by block

One can erase a desired section or byte on
EEPROM

Department of Computer Science and Information Engineering
National Cheng Kung University 13HANEL

SEMI-
CONDUCTOR

MEMORY

ROM

Flash Memory
EPROM
(cont’)

It is believed that flash memory will
replace part of the hard disk as a mass
storage medium

The flash memory can be programmed
while it is in its socket on the system board

Widely used as a way to upgrade PC BIOS ROM
Flash memory is semiconductor memory
with access time in the range of 100 ns
compared with disk access time in the
range of tens of milliseconds
Flash memory’s program/erase cycles must
become infinite, like hard disks

Program/erase cycle refers to the number of
times that a chip can be erased and
programmed before it becomes unusable
The program/erase cycle is 100,000 for flash
and EEPROM, 1000 for UV-EPROM

Department of Computer Science and Information Engineering
National Cheng Kung University 14HANEL

SEMI-
CONDUCTOR

MEMORY

ROM

Mask ROM

Mask ROM refers to a kind of ROM in
which the contents are programmed by
the IC manufacturer, not user-
programmable

The terminology mask is used in IC
fabrication
Since the process is costly, mask ROM is
used when the needed volume is high and
it is absolutely certain that the contents will
not change
The main advantage of mask ROM is its
cost, since it is significantly cheaper than
other kinds of ROM, but if an error in the
data/code is found, the entire batch must
be thrown away

Department of Computer Science and Information Engineering
National Cheng Kung University 15HANEL

SEMI-
CONDUCTOR

MEMORY

RAM (Random
Access

Memory)

RAM memory is called volatile memory
since cutting off the power to the IC
will result in the loss of data

Sometimes RAM is also referred to as
RAWM (read and write memory), in
contrast to ROM, which cannot be written
to

There are three types of RAM
Static RAM (SRAM)
NV-RAM (nonvolatile RAM)
Dynamic RAM (DRAM)

Department of Computer Science and Information Engineering
National Cheng Kung University 16HANEL

SEMI-
CONDUCTOR

MEMORY

RAM

SRAM (Static
RAM)

Storage cells in static RAM memory are
made of flip-flops and therefore do not
require refreshing in order to keep their
data
The problem with the use of flip-flops
for storage cells is that each cell require
at least 6 transistors to build, and the
cell holds only 1 bit of data

In recent years, the cells have been made
of 4 transistors, which still is too many
The use of 4-transistor cells plus the use of
CMOS technology has given birth to a high-
capacity SRAM, but its capacity is far below
DRAM

Department of Computer Science and Information Engineering
National Cheng Kung University 17HANEL

SEMI-
CONDUCTOR

MEMORY

RAM

NV-RAM
(Nonvolatile RAM)

NV-RAM combines the best of RAM and
ROM

The read and write ability of RAM, plus the
nonvolatility of ROM

NV-RAM chip internally is made of the
following components

It uses extremely power-efficient SRAM
cells built out of CMOS
It uses an internal lithium battery as a
backup energy source
It uses an intelligent control circuitry

The main job of this control circuitry is to
monitor the Vcc pin constantly to detect loss of
the external power supply

Department of Computer Science and Information Engineering
National Cheng Kung University 18HANEL

SEMI-
CONDUCTOR

MEMORY

RAM

Checksum Byte
ROM

To ensure the integrity of the ROM
contents, every system must perform
the checksum calculation

The process of checksum will detect any
corruption of the contents of ROM
The checksum process uses what is called
a checksum byte

The checksum byte is an extra byte that is
tagged to the end of series of bytes of data

Department of Computer Science and Information Engineering
National Cheng Kung University 19HANEL

SEMI-
CONDUCTOR

MEMORY

RAM

Checksum Byte
ROM

(cont’)

To calculate the checksum byte of a
series of bytes of data

Add the bytes together and drop the carries
Take the 2’s complement of the total sum,
and that is the checksum byte, which
becomes the last byte of the series

To perform the checksum operation,
add all the bytes, including the
checksum byte

The result must be zero
If it is not zero, one or more bytes of data
have been changed

Department of Computer Science and Information Engineering
National Cheng Kung University 20HANEL

SEMI-
CONDUCTOR

MEMORY

RAM

Checksum Byte
ROM

(cont’)

Assume that we have 4 bytes of hexadecimal data: 25H, 62H, 3FH, and
52H.(a) Find the checksum byte, (b) perform the checksum operation to
ensure data integrity, and (c) if the second byte 62H has been changed
to 22H, show how checksum detects the error.
Solution:
(a) Find the checksum byte.

25H The checksum is calculated by first adding the
+ 62H bytes. The sum is 118H, and dropping the carry,
+ 3FH we get 18H. The checksum byte is the 2’s
+ 52H complement of 18H, which is E8H

118H
(b) Perform the checksum operation to ensure data integrity.

25H
+ 62H Adding the series of bytes including the checksum
+ 3FH byte must result in zero. This indicates that all the
+ 52H bytes are unchanged and no byte is corrupted.
+ E8H

200H (dropping the carries)
(c) If the second byte 62H has been changed to 22H, show how

checksum detects the error.
25H

+ 22H Adding the series of bytes including the checksum
+ 3FH byte shows that the result is not zero, which indicates
+ 52H that one or more bytes have been corrupted.
+ E8H

1C0H (dropping the carry, we get C0H)

Department of Computer Science and Information Engineering
National Cheng Kung University 21HANEL

SEMI-
CONDUCTOR

MEMORY

RAM

DRAM (Dynamic
RAM)

Dynamic RAM uses a capacitor to store
each bit

It cuts down the number of transistors
needed to build the cell
It requires constant refreshing due to
leakage

The advantages and disadvantages of
DRAM memory

The major advantages are high density
(capacity), cheaper cost per bit, and lower
power consumption per bit
The disadvantages is that

it must be refreshed periodically, due to the fact
that the capacitor cell loses its charge;
While it is being refreshed, the data cannot be
accessed

Department of Computer Science and Information Engineering
National Cheng Kung University 22HANEL

SEMI-
CONDUCTOR

MEMORY

RAM

Packing Issue in
DRAM

In DRAM there is a problem of packing
a large number of cells into a single
chip with the normal number of pins
assigned to addresses

Using conventional method of data access,
large number of pins defeats the purpose
of high density and small packaging

For example, a 64K-bit chip (64K×1) must have
16 address lines and 1 data line, requiring 16
pins to send in the address

The method used is to split the address in
half and send in each half of the address
through the same pins, thereby requiring
fewer address pins

Department of Computer Science and Information Engineering
National Cheng Kung University 23HANEL

SEMI-
CONDUCTOR

MEMORY

RAM

Packing Issue in
DRAM
(cont’)

Internally, the DRAM structure is
divided into a square of rows and
columns
The first half of the address is called
the row and the second half is called
column

The first half of the address is sent in
through the address pins, and by activating
RAS (row address strobe), the internal
latches inside DRAM grab the first half of
the address
After that, the second half of the address is
sent in through the same pins, and by
activating CAS (column address strobe),
the internal latches inside DRAM latch the
second half of the address

Department of Computer Science and Information Engineering
National Cheng Kung University 24HANEL

SEMI-
CONDUCTOR

MEMORY

RAM

DRAM
Organization

In the discussion of ROM, we noted
that all of them have 8 pins for data

This is not the case for DRAM memory
chips, which can have any of the x1, x4, x8,
x16 organizations

Discuss the number of pins set aside for address in each of the
following memory chips. (a) 16K×4 DRAM (b) 16K×4 SRAM

Solution :
Since 214 = 16K :
(a) For DRAM we have 7 pins (A0-A6) for the address pins and 2

pins for RAS and CAS
(b) For SRAM we have 14 pins for address and no pins for RAS

and CAS since they are associated only with DRAM. In both
cases we have 4 pins for the data bus.

Department of Computer Science and Information Engineering
National Cheng Kung University 25HANEL

MEMORY
ADDRESS

DECODING

The CPU provides the address of the
data desired, but it is the job of the
decoding circuitry to locate the selected
memory block

Memory chips have one or more pins called
CS (chip select), which must be activated
for the memory’s contents to be accessed
Sometimes the chip select is also referred
to as chip enable (CE)

Department of Computer Science and Information Engineering
National Cheng Kung University 26HANEL

MEMORY
ADDRESS

DECODING
(cont’)

In connecting a memory chip to the
CPU, note the following points

The data bus of the CPU is connected
directly to the data pins of the memory chip
Control signals RD (read) and WR (memory
write) from the CPU are connected to the
OE (output enable) and WE (write enable)
pins of the memory chip
In the case of the address buses, while the
lower bits of the address from the CPU go
directly to the memory chip address pins,
the upper ones are used to activate the CS
pin of the memory chip

Department of Computer Science and Information Engineering
National Cheng Kung University 27HANEL

MEMORY
ADDRESS

DECODING
(cont’)

Normally memories are divided into
blocks and the output of the decoder
selects a given memory block

Using simple logic gates
Using the 74LS138
Using programmable logics

Department of Computer Science and Information Engineering
National Cheng Kung University 28HANEL

MEMORY
ADDRESS

DECODING

Simple Logic
Gate Address

Decoder

The simplest way of decoding circuitry
is the use of NAND or other gates

The fact that the output of a NAND gate is
active low, and that the CS pin is also
active low makes them a perfect match

A15-A12 must be 0011 in
order to select the chip
This result in the assignment
of address 3000H to 3FFFH to
this memory chip

CS
RD WR

MEMR

MEMW

A0

A11
4K*8

D7 D0

D0

D7

A12
A13
A14
A15

A0

A11

Department of Computer Science and Information Engineering
National Cheng Kung University 29HANEL

MEMORY
ADDRESS

DECODING

Using 74LS138
3-8 Decoder

This is one of the most widely used
address decoders

The 3 inputs A, B, and C generate 8 active-
low outputs Y0 – Y7

Each Y output is connected to CS of a memory
chip, allowing control of 8 memory blocks by a
single 74LS138

In the 74LS138, where A, B, and C select
which output is activated, there are three
additional inputs, G2A, G2B, and G1

G2A and G2B are both active low, and G1 is
active high
If any one of the inputs G1, G2A, or G2B is not
connected to an address signal, they must be
activated permanently either by Vcc or ground,
depending on the activation level

Department of Computer Science and Information Engineering
National Cheng Kung University 30HANEL

MEMORY
ADDRESS

DECODING

Using 74LS138
3-8 Decoder

(cont’)

74LS138 Decoder
Vcc GND

A
B
C

Y2

Y3
Y4

Y5
Y6
Y7

Y0

Enable

G1G2A G2B

Y1

Function Table
Inputs

Enable Select
G1 G2 C B A
X H
L X
H L
H L
H L
H L
H L
H L
H L
H L

X X X
X X X
L L L
L L H
L H L
L H H
H L L
H L H
H H L
H H H

Outputs
Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
H H H H H H H H
H H H H H H H H
L H H H H H H H
H L H H H H H H
H H L H H H H H
H H H L H H H H
H H H H L H H H
H H H H H L H H
H H H H H H L H
H H H H H H H L

CE
OE Vpp

MEMR

Vcc

A0

A11
4K*8

D7 D0

D0

D7

A0

A11

Y2

Y3
Y4

Y5
Y6
Y7

Y0
Y1A

B
C

G1

G2A
G2B

A12
A13
A14

Vcc

A15
GND

Department of Computer Science and Information Engineering
National Cheng Kung University 31HANEL

MEMORY
ADDRESS

DECODING

Using 74LS138
3-8 Decoder

(cont’)

Looking at the design in Figure 14-6, find the address range for the
Following. (a) Y4, (b) Y2, and (c) Y7.

Solution :
(a) The address range for Y4 is calculated as follows.
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

The above shows that the range for Y4 is 4000H to 4FFFH. In Figure
14-6, notice that A15 must be 0 for the decoder to be activated. Y4 will
be selected when A14 A13 A12 = 100 (4 in binary). The remaining
A11-A0 will be 0 for the lowest address and 1 for the highest address.
(b) The address range for Y2 is 2000H to 2FFFH.
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

(c) The address range for Y7 is 7000H to 7FFFH.
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Department of Computer Science and Information Engineering
National Cheng Kung University 32HANEL

MEMORY
ADDRESS

DECODING

Using
Programmable

Logic

Other widely used decoders are
programmable logic chips such as PAL
and GAL chips

One disadvantage of these chips is that
one must have access to a PAL/GAL
software and burner, whereas the 74LS138
needs neither of these
The advantage of these chips is that they
are much more versatile since they can be
programmed for any combination of
address ranges

Department of Computer Science and Information Engineering
National Cheng Kung University 33HANEL

INTERFACING
EXTERNAL

ROM

The 8031 chip is a ROMless version of
the 8051

It is exactly like any member of the 8051
family as far as executing the instructions
and features are concerned, but it has no
on-chip ROM
To make the 8031 execute 8051 code, it
must be connected to external ROM
memory containing the program code

8031 is ideal for many systems where
the on-chip ROM of 8051 is not
sufficient, since it allows the program
size to be as large as 64K bytes

Department of Computer Science and Information Engineering
National Cheng Kung University 34HANEL

INTERFACING
EXTERNAL

ROM

EA Pin

For 8751/89C51/DS5000-based system,
we connected the EA pin to Vcc to
indicate that the program code is
stored in the microcontroller’s on-chip
ROM

To indicate that the program code is stored
in external ROM, this pin must be
connected to GND

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University 35HANEL

INTERFACING
EXTERNAL

ROM

P0 and P2 in
Providing
Address

Since the PC (program counter) of the
8031/51 is 16-bit, it is capable of
accessing up to 64K bytes of program
code

In the 8031/51, port 0 and port 2 provide
the 16-bit address to access external
memory

P0 provides the lower 8 bit address A0 – A7, and
P2 provides the upper 8 bit address A8 – A15
P0 is also used to provide the 8-bit data bus
D0 – D7

P0.0 – P0.7 are used for both the address
and data paths

address/data multiplexing

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University 36HANEL

INTERFACING
EXTERNAL

ROM

P0 and P2 in
Providing
Address

(cont’)

ALE (address latch enable) pin is an
output pin for 8031/51

ALE = 0, P0 is used for data path
ALE = 1, P0 is used for address path

74LS373 D Latch

To extract the
address from the P0
pins we connect P0
to a 74LS373 and
use the ALE pin to
latch the address

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University 37HANEL

INTERFACING
EXTERNAL

ROM

P0 and P2 in
Providing
Address

(cont’)

Normally ALE = 0, and P0 is used as a
data bus, sending data out or bringing
data in
Whenever the 8031/51 wants to use P0
as an address bus, it puts the
addresses A0 – A7 on the P0 pins and
activates ALE = 1 Address/Data Multiplexing

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University 38HANEL

INTERFACING
EXTERNAL

ROM

PSEN

PSEN (program store enable) signal is
an output signal for the 8031/51
microcontroller and must be connected
to the OE pin of a ROM containing the
program code
It is important to emphasize the role of
EA and PSEN when connecting the
8031/51 to external ROM

When the EA pin is connected to GND, the
8031/51 fetches opcode from external ROM
by using PSEN

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University 39HANEL

INTERFACING
EXTERNAL

ROM

PSEN
(cont’)

The connection of the PSEN pin to the
OE pin of ROM

In systems based on the 8751/89C51/
DS5000 where EA is connected to Vcc,
these chips do not activate the PSEN pin

This indicates that the on-chip ROM contains
program code

Connection to External Program ROM

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1
(INT0)P3.2
(INT1)P3.3
(T0)P3.4
(T1)P3.5
(WR)P3.6
(RD)P3.7
XTAL2
XTAL1
GND

Vcc
P0.0(AD0)
P0.1(AD1)
P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)
-EA/VPP
ALE/PROG
-PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8051
(8031)

Department of Computer Science and Information Engineering
National Cheng Kung University 40HANEL

INTERFACING
EXTERNAL

ROM

On-Chip and
Off-Chip Code

ROM

In an 8751 system we could use on-
chip ROM for boot code and an external
ROM will contain the user’s program

We still have EA = Vcc,
Upon reset 8051 executes the on-chip program
first, then
When it reaches the end of the on-chip ROM, it
switches to external ROM for rest of program

8031/51
EA = GND

Off
Chip

0000

FFFF
~ ~

8051
EA = Vcc

0000

FFFF

Off
Chip

~ ~

On-chip
0FFF
1000

FFFF

8052
EA = Vcc

0000

Off
Chip

~ ~

On-chip
1FFF
2000

On-chip and Off-chip Program Code Access

Department of Computer Science and Information Engineering
National Cheng Kung University 41HANEL

INTERFACING
EXTERNAL

ROM

On-Chip and
Off-Chip Code

ROM
(cont’)

Discuss the program ROM space allocation for each of the following
cases.
(a) EA = 0 for the 8751 (89C51) chip.
(b) EA = Vcc with both on-chip and off-chip ROM for the 8751.
(c) EA = Vcc with both on-chip and off-chip ROM for the 8752.

Solution:
(a) When EA = 0, the EA pin is strapped to GND, and all program

fetches are directed to external memory regardless of whether or not
the 8751 has some on-chip ROM for program code. This external
ROM can be as high as 64K bytes with address space of 0000 –
FFFFH. In this case an 8751(89C51) is the same as the 8031 system.

(b) With the 8751 (89C51) system where EA=Vcc, it fetches the
program code of address 0000 – 0FFFH from on-chip ROM since it
has 4K bytes of on-chip program ROM and any fetches from
addresses 1000H – FFFFH are directed to external ROM.

(c) With the 8752 (89C52) system where EA=Vcc, it fetches the
program code of addresses 0000 – 1FFFH from on-chip ROM since
it has 8K bytes of on-chip program ROM and any fetches from
addresses 2000H – FFFFH are directed to external ROM

Department of Computer Science and Information Engineering
National Cheng Kung University 42HANEL

8051 DATA
MEMORY
SPACE

Data Memory
Space

The 8051 has 128K bytes of address
space

64K bytes are set aside for program code
Program space is accessed using the program
counter (PC) to locate and fetch instructions
In some example we placed data in the code
space and used the instruction
MOVC A,@A+DPTR to get data, where C stands
for code

The other 64K bytes are set aside for data
The data memory space is accessed using the
DPTR register and an instruction called MOVX,
where X stands for external

– The data memory space must be
implemented externally

Department of Computer Science and Information Engineering
National Cheng Kung University 43HANEL

8051 DATA
MEMORY
SPACE

External ROM
for Data

We use RD to connect the 8031/51 to
external ROM containing data

For the ROM containing the program code,
PSEN is used to fetch the code

8051 Connection to External Data ROM

Department of Computer Science and Information Engineering
National Cheng Kung University 44HANEL

8051 DATA
MEMORY
SPACE

MOVX
Instruction

MOVX is a widely used instruction
allowing access to external data
memory space

To bring externally stored data into the
CPU, we use the instruction
MOVX A,@DPTR

An external ROM uses the 8051 data space to store the look-up table
(starting at 1000H) for DAC data. Write a program to read 30 Bytes
of these data and send it to P1.

Solution:
MYXDATA EQU 1000H
COUNT EQU 30

…
MOV DPTR,#MYXDATA
MOV R2,#COUNT

AGAIN: MOVX A,@DPTR
MOV P1,A
INC DPTR
DJNZ R2,AGAIN

Although both MOVC
A,@A+DPTR and
MOVX A,@DPTR look
very similar, one is
used to get data in the
code space and the
other is used to get
data in the data space
of the microcontroller

Department of Computer Science and Information Engineering
National Cheng Kung University 45HANEL

8051 DATA
MEMORY
SPACE

MOVX
Instruction

(cont’)

Show the design of an 8031-based system with 8K bytes of program
ROM and 8K bytes of data ROM.

Solution:
Figure 14-14 shows the design. Notice the role of PSEN and RD in
each ROM. For program ROM, PSEN is used to activate both OE and
CE. For data ROM, we use RD to active OE, while CE is activated by a
Simple decoder.

8031 Connection to External Data ROM and External Program ROM

Department of Computer Science and Information Engineering
National Cheng Kung University 46HANEL

8051 DATA
MEMORY
SPACE

External Data
RAM

To connect the 8051 to an external
SRAM, we must use both RD (P3.7) and
WR (P3.6)

8051 Connection to External Data RAM

Department of Computer Science and Information Engineering
National Cheng Kung University 47HANEL

8051 DATA
MEMORY
SPACE

External Data
RAM
(cont’)

In writing data to external data RAM,
we use the instruction
MOVX @DPTR,A

(a) Write a program to read 200 bytes of data from P1 and save the data
in external RAM starting at RAM location 5000H.

(b) What is the address space allocated to data RAM in Figure 14-15?

Solution:
(a)
RAMDATA EQU 5000H
COUNT EQU 200

MOV DPTR,#RAMDATA
MOV R3,#COUNT

AGAIN: MOV A,P1
MOVX @DPTR,A
ACALL DELAY
INC DPTR
DJNZ R3,AGAIN

HERE: SJMP HERE
(b) The data address space is 8000H to BFFFH.

Department of Computer Science and Information Engineering
National Cheng Kung University 48HANEL

8051 DATA
MEMORY
SPACE

Single External
ROM for Code

and Data

Assume that we have an 8031-based
system connected to a single 64K×8
(27512) external ROM chip

The single external ROM chip is used for
both program code and data storage

For example, the space 0000 – 7FFFH is
allocated to program code, and address space
8000H – FFFFH is set aside for data

In accessing the data, we use the MOVX
instruction

Department of Computer Science and Information Engineering
National Cheng Kung University 49HANEL

8051 DATA
MEMORY
SPACE

Single External
ROM for Code

and Data
(cont’)

To allow a single ROM chip to provide
both program code space and data
space, we use an AND gate to signal
the OE pin of the ROM chip

A Single ROM for BOTH Program and Data

Department of Computer Science and Information Engineering
National Cheng Kung University 50HANEL

8051 DATA
MEMORY
SPACE

8031 System
with ROM and

RAM

Assume that we need an 8031 system with 16KB of program space,
16KB of data ROM starting at 0000, and 16K of NV-RAM starting at
8000H. Show the design using a 74LS138 for the address decoder.

Solution:
The solution is diagrammed in Figure 14-17. Notice that there is no
need for a decoder for program ROM, but we need a 74LS138 decoder
For data ROM and RAM. Also notice that G1 = Vcc, G2A = GND,
G2B = GND, and the C input of the 74LS138 is also grounded since we
Use Y0 – Y3 only.8031 Connection to External Program ROM,

Data RAM, and Data ROM

Department of Computer Science and Information Engineering
National Cheng Kung University 51HANEL

8051 DATA
MEMORY
SPACE

Interfacing to
Large External

Memory

In some applications we need a large
amount of memory to store data

The 8051 can support only 64K bytes of
external data memory since DPTR is 16-bit

To solve this problem, we connect A0 –
A15 of the 8051 directly to the external
memory’s A0 – A15 pins, and use some
of the P1 pins to access the 64K bytes
blocks inside the single 256K×8
memory chip

Department of Computer Science and Information Engineering
National Cheng Kung University 52HANEL

8051 DATA
MEMORY
SPACE

Interfacing to
Large External

Memory
(cont’)

Figure 14-18. 8051 Accessing 256K*8 External NV-RAM

Department of Computer Science and Information Engineering
National Cheng Kung University 53HANEL

8051 DATA
MEMORY
SPACE

Interfacing to
Large External

Memory
(cont’)

In a certain application, we need 256K bytes of NV-RAM to store data
collected by an 8051 microcontroller. (a) Show the connection of an
8051 to a single 256K×8 NV-RAM chip. (b) Show how various blocks
of this single chip are accessed

Solution:
(a) The 256K×8 NV-RAM has 18 address pins (A0 – A17) and 8 data

lines. As shown in Figure 14-18, A0 – A15 go directly to the
memory chip while A16 and A17 are controlled by P1.0 and P1.1,
respectively. Also notice that chip select of external RAM is
connected to P1.2 of the 8051.

(b) The 256K bytes of memory are divided into four blocks, and each
block is accessed as follows :

Chip select A17 A16
P1.2 P1.1 P1.0 Block address space
0 0 0 00000H - 0FFFFH
0 0 1 10000H - 1FFFFH
0 1 0 20000H - 2FFFFH
0 1 1 30000H - 3FFFFH
1 x x External RAM disabled

….

Department of Computer Science and Information Engineering
National Cheng Kung University 54HANEL

8051 DATA
MEMORY
SPACE

Interfacing to
Large External

Memory
(cont’)

….
For example, to access the 20000H – 2FFFFH address space we need
the following :

CLR P1.2 ;enable external RAM
MOV DPTR,#0 ;start of 64K memory block
CLR P1.0 ;A16 = 0
SETB P1.1 ;A17 = 1 for 20000H block
MOV A,SBUF ;get data from serial port
MOVX @DPTR,A
INC DPTR ;next location
...

1

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University

Chung-Ping Young
楊中平

REAL-WORLD INTERFACING I
LCD, ADC, AND SENSORS

Department of Computer Science and Information Engineering
National Cheng Kung University 2HANEL

INTERFACING
LCD TO 8051

LCD Operation

LCD is finding widespread use replacing
LEDs

The declining prices of LCD
The ability to display numbers, characters,
and graphics
Incorporation of a refreshing controller into
the LCD, thereby relieving the CPU of the
task of refreshing the LCD
Ease of programming for characters and
graphics

Department of Computer Science and Information Engineering
National Cheng Kung University 3HANEL

INTERFACING
LCD TO 8051

LCD Pin
Descriptions

Pin Descriptions for LCD

Descriptions

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

Enable

R/W=0 for write,
R/W=1 for read

RS=0 to select command register,
RS=1 to select data register

Power supply to control contrast

+5V power supply

Ground

I/ODB714

I/ODB613

I/ODB512

I/ODB411

I/ODB310

I/ODB29

I/ODB18

I/ODB07

I/OE6

IR/W5

IRS4

--VEE3

--VCC2

--VSS1

I/OSymbolPin

used by the
LCD to latch
information
presented to
its data bus

- Send displayed
information or
instruction
command codes to
the LCD
- Read the contents
of the LCD’s
internal registers

Department of Computer Science and Information Engineering
National Cheng Kung University 4HANEL

INTERFACING
LCD TO 8051

LCD Command
Codes

Force cursor to beginning to 1st line80

Force cursor to beginning to 2nd lineC0

2 lines and 5x7 matrix38

Shift the entire display to the right1C

Shift the entire display to the left18

Shift cursor position to right14

Shift cursor position to left10

Display on, cursor blinkingF

Display on, cursor blinkingE

Display on, cursor offC

Display off, cursor onA

Display off, cursor off8

Shift display left7

Shift display right5

Increment cursor (shift cursor to right)6

Decrement cursor (shift cursor to left)4

Return home2

Clear display screen1

Command to LCD Instruction RegisterCode (Hex)

LCD Command Codes

2

Department of Computer Science and Information Engineering
National Cheng Kung University 5HANEL

INTERFACING
LCD TO 8051

Sending Codes
and Data to

LCDs w/ Time
Delay

To send any of the commands to the LCD, make pin RS=0. For data,
make RS=1. Then send a high-to-low pulse to the E pin to enable the
internal latch of the LCD. This is shown in the code below.
;calls a time delay before sending next data/command
;P1.0-P1.7 are connected to LCD data pins D0-D7
;P2.0 is connected to RS pin of LCD
;P2.1 is connected to R/W pin of LCD
;P2.2 is connected to E pin of LCD

ORG
MOV A,#38H ;INIT. LCD 2 LINES, 5X7 MATRIX
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,#0EH ;display on, cursor on
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,#01 ;clear LCD
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,#06H ;shift cursor right
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,#84H ;cursor at line 1, pos. 4
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

8051
P1.0

P1.7

P2.0

P2.1

P2.2

RS R/W E

D0

D7

VCC

VEE

VSS

10k
POTLCD

Department of Computer Science and Information Engineering
National Cheng Kung University 6HANEL

INTERFACING
LCD TO 8051

Sending Codes
and Data to

LCDs w/ Time
Delay
(cont’)

MOV A,#’N’ ;display letter N
ACALL DATAWRT ;call display subroutine
ACALL DELAY ;give LCD some time
MOV A,#’O’ ;display letter O
ACALL DATAWRT ;call display subroutine

AGAIN: SJMP AGAIN ;stay here
COMNWRT: ;send command to LCD

MOV P1,A ;copy reg A to port 1
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse
CLR P2.2 ;E=0 for H-to-L pulse
RET

DATAWRT: ;write data to LCD
MOV P1,A ;copy reg A to port 1
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse
CLR P2.2 ;E=0 for H-to-L pulse
RET

DELAY: MOV R3,#50 ;50 or higher for fast CPUs
HERE2: MOV R4,#255 ;R4 = 255
HERE: DJNZ R4,HERE ;stay until R4 becomes 0

DJNZ R3,HERE2
RET
END

8051
P1.0

P1.7

P2.0

P2.1

P2.2

RS R/W E

D0

D7

VCC

VEE

VSS

10k
POTLCD

Department of Computer Science and Information Engineering
National Cheng Kung University 7HANEL

INTERFACING
LCD TO 8051

Sending Codes
and Data to

LCDs w/ Busy
Flag

;Check busy flag before sending data, command to LCD
;p1=data pin
;P2.0 connected to RS pin
;P2.1 connected to R/W pin
;P2.2 connected to E pin

ORG
MOV A,#38H ;init. LCD 2 lines ,5x7 matrix
ACALL COMMAND ;issue command
MOV A,#0EH ;LCD on, cursor on
ACALL COMMAND ;issue command
MOV A,#01H ;clear LCD command
ACALL COMMAND ;issue command
MOV A,#06H ;shift cursor right
ACALL COMMAND ;issue command
MOV A,#86H ;cursor: line 1, pos. 6
ACALL COMMAND ;command subroutine
MOV A,#’N’ ;display letter N
ACALL DATA_DISPLAY
MOV A,#’O’ ;display letter O
ACALL DATA_DISPLAY

HERE:SJMP HERE ;STAY HERE

8051
P1.0

P1.7

P2.0

P2.1

P2.2

RS R/W E

D0

D7

VCC

VEE

VSS

10k
POTLCD

Department of Computer Science and Information Engineering
National Cheng Kung University 8HANEL

INTERFACING
LCD TO 8051

Sending Codes
and Data to

LCDs w/ Busy
Flag

(cont’)

COMMAND:
ACALL READY ;is LCD ready?
MOV P1,A ;issue command code
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 to write to LCD
SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0,latch in
RET

DATA_DISPLAY:
ACALL READY ;is LCD ready?
MOV P1,A ;issue data
SETB P2.0 ;RS=1 for data
CLR P2.1 ;R/W =0 to write to LCD
SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0,latch in
RET

READY:
SETB P1.7 ;make P1.7 input port
CLR P2.0 ;RS=0 access command reg
SETB P2.1 ;R/W=1 read command reg

;read command reg and check busy flag
BACK:SETB P2.2 ;E=1 for H-to-L pulse

CLR P2.2 ;E=0 H-to-L pulse
JB P1.7,BACK ;stay until busy flag=0
RET
END

8051
P1.0

P1.7

P2.0

P2.1

P2.2

RS R/W E

D0

D7

VCC

VEE

VSS

10k
POTLCD

To read the command register,
we make R/W=1, RS=0, and a
H-to-L pulse for the E pin.

If bit 7 (busy flag) is high, the
LCD is busy and no information
should be issued to it.

3

Department of Computer Science and Information Engineering
National Cheng Kung University 9HANEL

INTERFACING
LCD TO 8051

LCD Data
Sheet

One can put data at any location in the
LCD and the following shows address
locations and how they are accessed

AAAAAAA=000_0000 to 010_0111 for line1
AAAAAAA=100_0000 to 110_0111 for line2

1

0

1

0

DB0

1

0

1

0

DB5

0

0

0

0

DB3

1

0

1

0

DB1

1

1

1

1

DB7 DB2

1

0

1

0

01Line2 (max)

01Line2 (min)

00Line1 (max)

00Line1 (min)

DB4DB6

LCD Addressing for the LCDs of 40×2 size

AAAAAAA100

DB0DB1DB2DB3DB4DB5DB6DB7R/WRS

The upper address
range can go as
high as 0100111
for the 40-
character-wide
LCD, which
corresponds to
locations 0 to 39

Department of Computer Science and Information Engineering
National Cheng Kung University 10HANEL

INTERFACING
LCD TO 8051

LCD Data
Sheet
(cont’)

LCD Timing

E

R/W

RS

Data

tAS

tDSW

tPWH

tH

tAH

tPWH = Enable pulse width
= 450 ns (minimum)

tDSW = Data set up time
= 195 ns (minimum)

tH = Data hold time
= 10 ns (minimum)

tAS = Set up time prior to E
(going high) for both RS and
R/W = 140 ns (minimum)

tAH = Hold time after E has
come down for both RS and
R/W = 10 ns (minimum)

Department of Computer Science and Information Engineering
National Cheng Kung University 11HANEL

INTERFACING
TO ADC AND

SENSORS

ADC Devices

ADCs (analog-to-digital converters) are
among the most widely used devices
for data acquisition

A physical quantity, like temperature,
pressure, humidity, and velocity, etc., is
converted to electrical (voltage, current)
signals using a device called a transducer,
or sensor

We need an analog-to-digital converter
to translate the analog signals to digital
numbers, so microcontroller can read
them

Department of Computer Science and Information Engineering
National Cheng Kung University 12HANEL

INTERFACING
TO ADC AND

SENSORS

ADC804 Chip

ADC804 IC is an analog-to-digital
converter

It works with +5 volts and has a resolution
of 8 bits
Conversion time is another major factor in
judging an ADC

Conversion time is defined as the time it takes
the ADC to convert the analog input to a digital
(binary) number
In ADC804 conversion time varies depending on
the clocking signals applied to CLK R and CLK IN
pins, but it cannot be faster than 110 µs

4

Department of Computer Science and Information Engineering
National Cheng Kung University 13HANEL

INTERFACING
TO ADC AND

SENSORS

ADC804 Chip
(cont’)

+5V

20

3
5

10
2
1

4

19
9

7
8

610k
POT

10k
150 pF

normally
open
START

To LEDs

Vin(+)
Vin(-)
A GND
Vref /2

CLK R

CLK in

CS
RD
D GND

D0
D1
D2
D3
D4
D5
D6
D7 11

12
13
14
15
16
17
18

WR
INTR

VCC

+5V power supply
or a reference
voltage when
Vref/2 input is open
(not connected)

CS is an active low
input used to activate
ADC804

Differential analog
inputs where Vin
= Vin (+) – Vin (-)
Vin (-) is connected
to ground and Vin
(+) is used as the
analog input to be
converted

“end of conversion”
When the conversion is
finished, it goes low to signal
the CPU that the converted
data is ready to be picked up

“output enable”
a high-to-low RD pulse is
used to get the 8-bit
converted data out of
ADC804

“start conversion”
When WR makes a low-to-
high transition, ADC804
starts converting the analog
input value of Vin to an 8-
bit digital number

Department of Computer Science and Information Engineering
National Cheng Kung University 14HANEL

INTERFACING
TO ADC AND

SENSORS

ADC804 Chip
(cont’)

CLK IN and CLK R
CLK IN is an input pin connected to an
external clock source
To use the internal clock generator
(also called self-clocking), CLK IN and
CLK R pins are connected to a capacitor
and a resistor, and the clock frequency
is determined by

Typical values are R = 10K ohms and C =
150 pF
We get f = 606 kHz and the conversion time
is 110 µs

RC
f

1.1
1

=
+5V

20

3
5

10
2
1

4

19
9

7
8

6 Vin(+)
Vin(-)
A GND
Vref /2

CLK R

CLK in

CS
RD
D GND

D0
D1
D2
D3
D4
D5
D6
D7 11

12
13
14
15
16
17
18

WR
INTR

VCC

Department of Computer Science and Information Engineering
National Cheng Kung University 15HANEL

INTERFACING
TO ADC AND

SENSORS

ADC804 Chip
(cont’)

Vref/2
It is used for the reference voltage

If this pin is open (not connected), the analog
input voltage is in the range of 0 to 5 volts (the
same as the Vcc pin)
If the analog input range needs to be 0 to 4
volts, Vref/2 is connected to 2 volts

Vref/2 Relation to Vin Range

1/256=3.900 to 10.5

2/256=7.810 to 21.0

2.56/256=100 to 2.561.28

3/256=11.710 to 31.5

4/255=15.620 to 42.0

5/256=19.530 to 5Not connected*

Step Size (mV)Vin(V)Vref/2(v)

Step size is the smallest change can be discerned by an ADC

+5V

20

3
5

10
2
1

4

19
9

7
8

6 Vin(+)
Vin(-)
A GND
Vref /2
CLK R

CLK in

CS
RD
D GND

D0
D1
D2
D3
D4
D5
D6
D7 11

12
13
14
15
16
17
18

WR
INTR

VCC

Department of Computer Science and Information Engineering
National Cheng Kung University 16HANEL

INTERFACING
TO ADC AND

SENSORS

ADC804 Chip
(cont’)

D0-D7
The digital data output pins
These are tri-state buffered

The converted data is accessed only when CS =
0 and RD is forced low

To calculate the output voltage, use the
following formula

Dout = digital data output (in decimal),
Vin = analog voltage, and
step size (resolution) is the smallest change

sizestep
VD in

out =
+5V

20

3
5

10
2
1

4

19
9

7
8

6 Vin(+)
Vin(-)
A GND
Vref /2

CLK R

CLK in

CS
RD
D GND

D0
D1
D2
D3
D4
D5
D6
D7 11

12
13
14
15
16
17
18

WR
INTR

VCC

5

Department of Computer Science and Information Engineering
National Cheng Kung University 17HANEL

INTERFACING
TO ADC AND

SENSORS

ADC804 Chip
(cont’)

Analog ground and digital ground
Analog ground is connected to the ground
of the analog Vin

Digital ground is connected to the ground
of the Vcc pin

To isolate the analog Vin signal from
transient voltages caused by digital
switching of the output D0 – D7

This contributes to the accuracy of the
digital data output

+5V

20

3
5

10
2
1

4

19
9

7
8

6 Vin(+)
Vin(-)
A GND
Vref /2

CLK R

CLK in

CS
RD
D GND

D0
D1
D2
D3
D4
D5
D6
D7 11

12
13
14
15
16
17
18

WR
INTR

VCC

Department of Computer Science and Information Engineering
National Cheng Kung University 18HANEL

INTERFACING
TO ADC AND

SENSORS

ADC804 Chip
(cont’)

The following steps must be followed
for data conversion by the ADC804 chip

Make CS = 0 and send a low-to-high pulse
to pin WR to start conversion
Keep monitoring the INTR pin

If INTR is low, the conversion is finished
If the INTR is high, keep polling until it goes low

After the INTR has become low, we make
CS = 0 and send a high-to-low pulse to the
RD pin to get the data out of the ADC804

D0-D7 Data out

Start conversion

End conversion

Read it

WR

CS

INTR

RD

CS is set to low for both
RD and WR pulses

Department of Computer Science and Information Engineering
National Cheng Kung University 19HANEL

INTERFACING
TO ADC AND

SENSORS

Testing
ADC804

ADC804 Free Running Test Mode
+5V

20

3
5

10
2
1

4

19
9

7
8

610k
POT

10k
150 pF

normally
open
START

To LEDs

Vin(+)
Vin(-)
A GND
Vref /2

CLK R

CLK in

CS
RD
D GND

D0
D1
D2
D3
D4
D5
D6
D7 11

12
13
14
15
16
17
18

WR
INTR

VCC

The CS input is
grounded and the
WR input is
connected to the
INTR output

The binary outputs are
monitored on the LED
of the digital trainer

a potentiometer used to
apply a 0-to-5 V analog
voltage to input Vin (+)
of the 804 ADC

Department of Computer Science and Information Engineering
National Cheng Kung University 20HANEL

INTERFACING
TO ADC AND

SENSORS

Testing
ADC804

(cont’)

Examine the ADC804 connection to the 8051 in Figure 12-7. Write a program to
monitor the INTR pin and bring an analog input into register A. Then call a
hex-to ACSII conversion and data display subroutines. Do this continuously.

;p2.6=WR (start conversion needs to L-to-H pulse)
;p2.7 When low, end-of-conversion)
;p2.5=RD (a H-to-L will read the data from ADC chip)
;p1.0 – P1.7= D0 - D7 of the ADC804
;

MOV P1,#0FFH ;make P1 = input
BACK: CLR P2.6 ;WR = 0

SETB P2.6 ;WR = 1 L-to-H to start conversion
HERE: JB P2.7,HERE ;wait for end of conversion

CLR P2.5 ;conversion finished, enable RD
MOV A,P1 ;read the data
ACALL CONVERSION ;hex-to-ASCII conversion
ACALL DATA_DISPLAY;display the data
SETB p2.5 ;make RD=1 for next round
SJMP BACK

6

Department of Computer Science and Information Engineering
National Cheng Kung University 21HANEL

INTERFACING
TO ADC AND

SENSORS

Testing
ADC804

(cont’)

5V

10k
POTVin (+)

Vin (-)

A GND

Vref /2

CLK R
CLK in

CS

RD

D GND

D0
D1
D2
D3
D4
D5
D6
D7

WR

INTR

VCCP2.5

P2.6

P1.0

P1.7

P2.7

8051 ADC804

10k 150 pF

8051 Connection to ADC804 with Self-Clocking

Department of Computer Science and Information Engineering
National Cheng Kung University 22HANEL

INTERFACING
TO ADC AND

SENSORS

ADC804 Clock
from 8051

XTAL2

5V

10k
POTVin (+)

Vin (-)

A GND

Vref /2

CLK in

CLK R

CS

RD

GND

D0
D1
D2
D3
D4
D5
D6
D7

WR

INTR

VCCP2.5

P2.6

P1.0

P1.7

P2.7

XTAL1

XTAL2

D Q

Q

D Q

Q

8051 ADC804

74LS74

The frequency of crystal is too
high, we use two D flip-flops
to divide the frequency by 4

8051 Connection to ADC804 with Clock from XTAL2 of 8051

Department of Computer Science and Information Engineering
National Cheng Kung University 23HANEL

INTERFACING
TO ADC AND

SENSORS

Interfacing
Temperature

Sensor

A thermistor responds to temperature
change by changing resistance, but its
response is not linear
The complexity associated with writing
software for such nonlinear devices has
led many manufacturers to market the
linear temperature sensor

1.70075

0.817100

3.89350

10.00025

29.4900

Tf (K ohms)Temperature (C)

From William Kleitz, digital Electronics

Department of Computer Science and Information Engineering
National Cheng Kung University 24HANEL

INTERFACING
TO ADC AND

SENSORS

LM34 and LM35
Temperature

Sensors

The sensors of the LM34/LM35 series
are precision integrated-circuit
temperature sensors whose output
voltage is linearly proportional to the
Fahrenheit/Celsius temperature

The LM34/LM35 requires no external
calibration since it is inherently calibrated
It outputs 10 mV for each degree of
Fahrenheit/Celsius temperature

7

Department of Computer Science and Information Engineering
National Cheng Kung University 25HANEL

INTERFACING
TO ADC AND

SENSORS

Signal
Conditioning

and
Interfacing

LM35

Signal conditioning is a widely used
term in the world of data acquisition

It is the conversion of the signals (voltage,
current, charge, capacitance, and
resistance) produced by transducers to
voltage, which is sent to the input of an A-
to-D converter

Signal conditioning can be a current-to-
voltage conversion or a signal
amplification

The thermistor changes resistance with
temperature, while the change of
resistance must be translated into voltage
in order to be of any use to an ADC

Department of Computer Science and Information Engineering
National Cheng Kung University 26HANEL

INTERFACING
TO ADC AND

SENSORS

Signal
Conditioning

and
Interfacing

LM35
(cont’)

Getting Data From the Analog World

Analog world (temperature,
pressure, etc.)

Transducer

Signal conditioning

ADC

Microcontroller

Department of Computer Science and Information Engineering
National Cheng Kung University 27HANEL

INTERFACING
TO ADC AND

SENSORS

Signal
Conditioning

and
Interfacing

LM35
(cont’)

Example:

Look at the case of connecting an LM35 to an ADC804. Since the
ADC804 has 8-bit resolution with a maximum of 256 steps and the
LM35 (or LM34) produces 10 mV for every degree of temperature
change, we can condition Vin of the ADC804 to produce a Vout of
2560 mV full-scale output. Therefore, in order to produce the full-
scale Vout of 2.56 V for the ADC804, We need to set Vref/2 = 1.28.
This makes Vout of the ADC804 correspond directly to the
temperature as monitored by the LM35.

0001 111030030

0000 101010010

0000 0011303

0000 0010202

0000 0001101

0000 000000

Vout (D7 – D0)Vin (mV)Temp. (C)

Temperature vs. Vout of the ADC804

Department of Computer Science and Information Engineering
National Cheng Kung University 28HANEL

INTERFACING
TO ADC AND

SENSORS

Signal
Conditioning

and
Interfacing

LM35
(cont’)

8051 Connection to ADC804 and Temperature Sensor

5V

10k

Vin (+)

Vin (-)

CLK in

CLK R

RD

D0
D1
D2
D3
D4
D5
D6
D7

WR

INTR

VCCP2.5

P2.6

P1.0

P1.7

P2.7

Vref /2

CS
GND

A GND

XTAL1

XTAL2

D Q

Q

D Q

Q

8051 ADC804

74LS74

2.5k

LM
336

LM35 or
LM34

Set to 1.28 V

Notice that we use the LM336-2.5 zener diode to
fix the voltage across the 10K pot at 2.5 volts.
The use of the LM336-2.5 should overcome any
fluctuations in the power supply

8

Department of Computer Science and Information Engineering
National Cheng Kung University 29HANEL

INTERFACING
TO ADC AND

SENSORS

ADC808/809
Chip

ADC808 has 8 analog inputs
It allows us to monitor up to 8 different
transducers using only a single chip
The chip has 8-bit data output just like the
ADC804
The 8 analog input channels are
multiplexed and selected according to table
below using three address pins, A, B, and C

111IN7

011IN6

101IN5

001IN4

110IN3

010IN2

100IN1

000IN0

ABCSelected Analog Channel

ADC808 Analog Channel Selection

Department of Computer Science and Information Engineering
National Cheng Kung University 30HANEL

INTERFACING
TO ADC AND

SENSORS

ADC808/809
Chip
(cont’)

ADC808/809

Vref(+)

Vref(-)
SC ALE C B A

EOC

OE

GND Clock Vcc

ADC808/809

D0

D7

(LSB)

IN7

IN0

Department of Computer Science and Information Engineering
National Cheng Kung University 31HANEL

INTERFACING
TO ADC AND

SENSORS

Steps to
Program

ADC808/809

1. Select an analog channel by providing
bits to A, B, and C addresses

2. Activate the ALE pin
It needs an L-to-H pulse to latch in the
address

3. Activate SC (start conversion) by an
H-to-L pulse to initiate conversion

4. Monitor EOC (end of conversion) to
see whether conversion is finished

5. Activate OE (output enable) to read
data out of the ADC chip

An H-to-L pulse to the OE pin will bring
digital data out of the chip

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

LCD AND KEYBOARD
INTERFACING

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

LCD
INTERFACING

LCD Operation

LCD is finding widespread use
replacing LEDs

The declining prices of LCD
The ability to display numbers, characters,
and graphics
Incorporation of a refreshing controller
into the LCD, thereby relieving the CPU of
the task of refreshing the LCD
Ease of programming for characters and
graphics

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

LCD
INTERFACING

LCD Pin
Descriptions

Pin Descriptions for LCD

Pin Symbol I/O Descriptions

1 VSS -- Ground

2 VCC -- +5V power supply

Power supply to control contrast

RS=0 to select command register,
RS=1 to select data register

R/W=0 for write,
R/W=1 for read

Enable

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

The 8-bit data bus

3 VEE --

4 RS I

5 R/W I

6 E I/O

7 DB0 I/O

8 DB1 I/O

9 DB2 I/O

10 DB3 I/O

11 DB4 I/O

12 DB5 I/O

13 DB6 I/O

14 DB7 I/O

used by the
LCD to latch
information
presented to
its data bus

- Send displayed
information or
instruction
command codes to
the LCD
- Read the contents
of the LCD’s
internal registers

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

LCD
INTERFACING

LCD Command
Codes

LCD Command Codes
Code (Hex) Command to LCD Instruction Register

1

2

4

6

5

7

8

A

C

E

F

10

14

18

1C

80

C0

38 2 lines and 5x7 matrix

Clear display screen

Return home

Decrement cursor (shift cursor to left)

Increment cursor (shift cursor to right)

Shift display right

Shift display left

Display off, cursor off

Display off, cursor on

Display on, cursor off

Display on, cursor blinking

Display on, cursor blinking

Shift cursor position to left

Shift cursor position to right

Shift the entire display to the left

Shift the entire display to the right

Force cursor to beginning to 1st line

Force cursor to beginning to 2nd line

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

LCD
INTERFACING

Sending Data/
Commands to
LCDs w/ Time

Delay

To send any of the commands to the LCD, make pin RS=0. For data,
make RS=1. Then send a high-to-low pulse to the E pin to enable the
internal latch of the LCD. This is shown in the code below.
;calls a time delay before sending next data/command
;P1.0-P1.7 are connected to LCD data pins D0-D7
;P2.0 is connected to RS pin of LCD
;P2.1 is connected to R/W pin of LCD
;P2.2 is connected to E pin of LCD

ORG 0H
MOV A,#38H ;INIT. LCD 2 LINES, 5X7 MATRIX
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,#0EH ;display on, cursor on
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,#01 ;clear LCD
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,#06H ;shift cursor right
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
MOV A,#84H ;cursor at line 1, pos. 4
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time

.....

8051
P1.0

P1.7

P2.0

P2.1

P2.2

RS R/W E

D0

D7

VCC

VEE

VSS

10k
POTLCD

+5V

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

LCD
INTERFACING

Sending Data/
Commands to
LCDs w/ Time

Delay
(cont’)

.....
MOV A,#’N’ ;display letter N
ACALL DATAWRT ;call display subroutine
ACALL DELAY ;give LCD some time
MOV A,#’O’ ;display letter O
ACALL DATAWRT ;call display subroutine

AGAIN: SJMP AGAIN ;stay here
COMNWRT: ;send command to LCD

MOV P1,A ;copy reg A to port 1
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse
ACALL DELAY ;give LCD some time
CLR P2.2 ;E=0 for H-to-L pulse
RET

DATAWRT: ;write data to LCD
MOV P1,A ;copy reg A to port 1
SETB P2.0 ;RS=1 for data
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse
ACALL DELAY ;give LCD some time
CLR P2.2 ;E=0 for H-to-L pulse
RET

DELAY: MOV R3,#50 ;50 or higher for fast CPUs
HERE2: MOV R4,#255 ;R4 = 255
HERE: DJNZ R4,HERE ;stay until R4 becomes 0

DJNZ R3,HERE2
RET
END

8051
P1.0

P1.7

P2.0

P2.1

P2.2

RS R/W E

D0

D7

VCC

VEE

VSS

10k
POTLCD

+5V

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

LCD
INTERFACING

Sending Data/
Commands to
LCDs w/ Time

Delay
(cont’)

;Check busy flag before sending data, command to LCD
;p1=data pin
;P2.0 connected to RS pin
;P2.1 connected to R/W pin
;P2.2 connected to E pin

ORG 0H
MOV A,#38H ;init. LCD 2 lines ,5x7 matrix
ACALL COMMAND ;issue command
MOV A,#0EH ;LCD on, cursor on
ACALL COMMAND ;issue command
MOV A,#01H ;clear LCD command
ACALL COMMAND ;issue command
MOV A,#06H ;shift cursor right
ACALL COMMAND ;issue command
MOV A,#86H ;cursor: line 1, pos. 6
ACALL COMMAND ;command subroutine
MOV A,#’N’ ;display letter N
ACALL DATA_DISPLAY
MOV A,#’O’ ;display letter O
ACALL DATA_DISPLAY

HERE:SJMP HERE ;STAY HERE
.....

8051
P1.0

P1.7

P2.0

P2.1

P2.2

RS R/W E

D0

D7

VCC

VEE

VSS

10k
POTLCD

+5V

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

LCD
INTERFACING

Sending Codes
and Data to

LCDs w/ Busy
Flag

(cont’)

.....
COMMAND:

ACALL READY ;is LCD ready?
MOV P1,A ;issue command code
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 to write to LCD
SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0,latch in
RET

DATA_DISPLAY:
ACALL READY ;is LCD ready?
MOV P1,A ;issue data
SETB P2.0 ;RS=1 for data
CLR P2.1 ;R/W =0 to write to LCD
SETB P2.2 ;E=1 for H-to-L pulse
CLR P2.2 ;E=0,latch in
RET

READY:
SETB P1.7 ;make P1.7 input port
CLR P2.0 ;RS=0 access command reg
SETB P2.1 ;R/W=1 read command reg

;read command reg and check busy flag
BACK:SETB P2.2 ;E=1 for H-to-L pulse

CLR P2.2 ;E=0 H-to-L pulse
JB P1.7,BACK ;stay until busy flag=0
RET
END

To read the command register, we make R/W=1,
RS=0, and a H-to-L pulse for the E pin.

8051
P1.0

P1.7

P2.0

P2.1

P2.2

RS R/W E

D0

D7

VCC

VEE

VSS

10k
POTLCD

+5V

If bit 7 (busy flag) is high, the LCD is busy
and no information should be issued to it.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

LCD
INTERFACING

Sending Codes
and Data to

LCDs w/ Busy
Flag

(cont’)

LCD Timing for Read

E

R/W

RS

Data

tAS tAH

tD

tD = Data output delay time

tAS = Setup time prior to E
(going high) for both RS and
R/W = 140 ns (minimum)

tAH = Hold time after E has
come down for both RS and
R/W = 10 ns (minimum)

Note : Read requires an L-to-H pulse for the E pin

D0 – D7

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

LCD
INTERFACING

Sending Codes
and Data to

LCDs w/ Busy
Flag

(cont’)

LCD Timing for Write

E

R/W

RS

Data

tAS

tDSW

tPWH

tH

tAH

tPWH = Enable pulse width
= 450 ns (minimum)

tDSW = Data set up time
= 195 ns (minimum)

tH = Data hold time
= 10 ns (minimum)

tAS = Setup time prior to E
(going high) for both RS and
R/W = 140 ns (minimum)

tAH = Hold time after E has
come down for both RS and
R/W = 10 ns (minimum)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

LCD
INTERFACING

LCD Data Sheet

One can put data at any location in the
LCD and the following shows address
locations and how they are accessed

AAAAAAA=000_0000 to 010_0111 for line1
AAAAAAA=100_0000 to 110_0111 for line2

DB7 DB6 DB5 DB3 DB1 DB0

0 0

1

0

1

1

1

0

1

0

0

0

0

1

0

1

01

11

DB4 DB2

Line1 (min) 0 0 0

Line1 (max) 0 0 1

0

1

Line2 (min) 1 0

Line2 (max) 1 0

LCD Addressing for the LCDs of 40×2 size

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 1 A A A A A A A

The upper address
range can go as
high as 0100111
for the 40-
character-wide
LCD, which
corresponds to
locations 0 to 39

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

LCD
INTERFACING

Sending
Information to

LCD Using
MOVC

Instruction

;Call a time delay before sending next data/command
; P1.0-P1.7=D0-D7, P2.0=RS, P2.1=R/W, P2.2=E

ORG 0
MOV DPTR,#MYCOM

C1: CLR A
MOVC A,@A+DPTR
ACALL COMNWRT ;call command subroutine
ACALL DELAY ;give LCD some time
INC DPTR
JZ SEND_DAT
SJMP C1

SEND_DAT:
MOV DPTR,#MYDATA

D1: CLR A
MOVC A,@A+DPTR
ACALL DATAWRT ;call command subroutine
ACALL DELAY ;give LCD some time
INC DPTR
JZ AGAIN
SJMP D1

AGAIN: SJMP AGAIN ;stay here
.....

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

LCD
INTERFACING

Sending
Information to

LCD Using
MOVC

Instruction
(cont’)

.....
COMNWRT: ;send command to LCD

MOV P1,A ;copy reg A to P1
CLR P2.0 ;RS=0 for command
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse
ACALL DELAY ;give LCD some time
CLR P2.2 ;E=0 for H-to-L pulse
RET

DATAWRT: ;write data to LCD
MOV P1,A ;copy reg A to port 1
SETB P2.0 ;RS=1 for data
CLR P2.1 ;R/W=0 for write
SETB P2.2 ;E=1 for high pulse
ACALL DELAY ;give LCD some time
CLR P2.2 ;E=0 for H-to-L pulse
RET

DELAY: MOV R3,#250 ;50 or higher for fast CPUs
HERE2: MOV R4,#255 ;R4 = 255
HERE: DJNZ R4,HERE ;stay until R4 becomes 0

DJNZ R3,HERE2
RET
ORG 300H

MYCOM: DB 38H,0EH,01,06,84H,0 ; commands and null
MYDATA: DB “HELLO”,0

END

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

LCD
INTERFACING

Sending
Information to

LCD Using
MOVC

Instruction
(cont’)

Example 12-2
Write an 8051 C program to send letters ‘M’, ‘D’, and ‘E’ to the LCD
using the busy flag method.

Solution:
#include <reg51.h>
sfr ldata = 0x90; //P1=LCD data pins
sbit rs = P2^0;
sbit rw = P2^1;
sbit en = P2^2;
sbit busy = P1^7;
void main(){
lcdcmd(0x38);
lcdcmd(0x0E);
lcdcmd(0x01);
lcdcmd(0x06);
lcdcmd(0x86); //line 1, position 6
lcdcmd(‘M’);
lcdcmd(‘D’);
lcdcmd(‘E’);

}
.....

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

LCD
INTERFACING

Sending
Information to

LCD Using
MOVC

Instruction
(cont’)

.....
void lcdcmd(unsigned char value){
lcdready(); //check the LCD busy flag
ldata = value; //put the value on the pins
rs = 0;
rw = 0;
en = 1; //strobe the enable pin
MSDelay(1);
en = 0;
return;

}

void lcddata(unsigned char value){
lcdready(); //check the LCD busy flag
ldata = value; //put the value on the pins
rs = 1;
rw = 0;
en = 1; //strobe the enable pin
MSDelay(1);
en = 0;
return;

}
.....

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

LCD
INTERFACING

Sending
Information to

LCD Using
MOVC

Instruction
(cont’)

.....
void lcdready(){
busy = 1; //make the busy pin at input
rs = 0;
rw = 1;
while(busy==1){ //wait here for busy flag
en = 0; //strobe the enable pin
MSDelay(1);
en = 1;

}

void lcddata(unsigned int itime){
unsigned int i, j;
for(i=0;i<itime;i++)
for(j=0;j<1275;j++);

}

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

KEYBOARD
INTERFACING

Keyboards are organized in a matrix of
rows and columns

The CPU accesses both rows and columns
through ports

Therefore, with two 8-bit ports, an 8 x 8 matrix
of keys can be connected to a microprocessor

When a key is pressed, a row and a
column make a contact

Otherwise, there is no connection between
rows and columns

In IBM PC keyboards, a single
microcontroller takes care of hardware
and software interfacing

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

KEYBOARD
INTERFACING

Scanning and
Identifying the

Key

A 4x4 matrix connected to two ports
The rows are connected to an output port
and the columns are connected to an
input port

Matrix Keyboard Connection to ports

B

3

7

F

A

2

6

E

9

1

5

D

8

0

4

C

D3 D2 D1 D0

D0

D1

D2

D3

Port 1
(Out) Port 2

(In)

Vcc

If no key has
been pressed,
reading the
input port will
yield 1s for all
columns since
they are all
connected to
high (Vcc)

If all the rows are
grounded and a key
is pressed, one of
the columns will
have 0 since the key
pressed provides the
path to ground

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

It is the function of the microcontroller
to scan the keyboard continuously to
detect and identify the key pressed
To detect a pressed key, the
microcontroller grounds all rows by
providing 0 to the output latch, then it
reads the columns

If the data read from columns is D3 – D0 =
1111, no key has been pressed and the
process continues till key press is detected
If one of the column bits has a zero, this
means that a key press has occurred

For example, if D3 – D0 = 1101, this means that
a key in the D1 column has been pressed
After detecting a key press, microcontroller will
go through the process of identifying the key

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

Starting with the top row, the
microcontroller grounds it by providing
a low to row D0 only

It reads the columns, if the data read is all
1s, no key in that row is activated and the
process is moved to the next row

It grounds the next row, reads the
columns, and checks for any zero

This process continues until the row is
identified

After identification of the row in which
the key has been pressed

Find out which column the pressed key
belongs to

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

Example 12-3
From Figure 12-6, identify the row and column of the pressed key for

each of the following.
(a) D3 – D0 = 1110 for the row, D3 – D0 = 1011 for the column
(b) D3 – D0 = 1101 for the row, D3 – D0 = 0111 for the column

Solution :
From Figure 13-5 the row and column can be used to identify the key.
(a) The row belongs to D0 and the column belongs to D2; therefore,

key number 2 was pressed.
(b) The row belongs to D1 and the column belongs to D3; therefore,

key number 7 was pressed.

B

3

7

F

A

2

6

E

9

1

5

D

8

0

4

C

D3 D2 D1 D0

D0

D1

D2

D3

Port 1
(Out) Port 2

(In)

Vcc

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

Program 12-4 for detection and
identification of key activation goes
through the following stages:

1. To make sure that the preceding key has
been released, 0s are output to all rows
at once, and the columns are read and
checked repeatedly until all the columns
are high

When all columns are found to be high, the
program waits for a short amount of time
before it goes to the next stage of waiting for
a key to be pressed

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

2. To see if any key is pressed, the columns
are scanned over and over in an infinite
loop until one of them has a 0 on it

Remember that the output latches connected
to rows still have their initial zeros (provided
in stage 1), making them grounded
After the key press detection, it waits 20 ms
for the bounce and then scans the columns
again
(a) it ensures that the first key press

detection was not an erroneous one due a
spike noise

(b) the key press. If after the 20-ms delay the
key is still pressed, it goes back into the
loop to detect a real key press

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

3. To detect which row key press belongs to,
it grounds one row at a time, reading the
columns each time

If it finds that all columns are high, this means
that the key press cannot belong to that row
– Therefore, it grounds the next row and

continues until it finds the row the key
press belongs to

Upon finding the row that the key press
belongs to, it sets up the starting address for
the look-up table holding the scan codes (or
ASCII) for that row

4. To identify the key press, it rotates the
column bits, one bit at a time, into the
carry flag and checks to see if it is low

Upon finding the zero, it pulls out the ASCII
code for that key from the look-up table
otherwise, it increments the pointer to point to
the next element of the look-up table

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

Flowchart for Program 12-4

Start

Ground all rows

Read all columns

All keys
open?

no 1
yes

1

Read all columns

All keys
down?

yes

no

Wait for debounce

Read all columns

All keys
down?

2

yes

no

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

2

Ground next row

All keys
down?

yes

no

Find which key
is pressed

Get scan code
from table

Return

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

Program 12-4: Keyboard Program
;keyboard subroutine. This program sends the ASCII
;code for pressed key to P0.1
;P1.0-P1.3 connected to rows, P2.0-P2.3 to column

MOV P2,#0FFH ;make P2 an input port
K1: MOV P1,#0 ;ground all rows at once

MOV A,P2 ;read all col
;(ensure keys open)

ANL A,00001111B ;masked unused bits
CJNE A,#00001111B,K1 ;till all keys release

K2: ACALL DELAY ;call 20 msec delay
MOV A,P2 ;see if any key is pressed
ANL A,00001111B ;mask unused bits
CJNE A,#00001111B,OVER;key pressed, find row
SJMP K2 ;check till key pressed

OVER: ACALL DELAY ;wait 20 msec debounce time
MOV A,P2 ;check key closure
ANL A,00001111B ;mask unused bits
CJNE A,#00001111B,OVER1;key pressed, find row
SJMP K2 ;if none, keep polling

....

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

....
OVER1: MOV P1, #11111110B ;ground row 0

MOV A,P2 ;read all columns
ANL A,#00001111B ;mask unused bits
CJNE A,#00001111B,ROW_0 ;key row 0, find col.
MOV P1,#11111101B ;ground row 1
MOV A,P2 ;read all columns
ANL A,#00001111B ;mask unused bits
CJNE A,#00001111B,ROW_1 ;key row 1, find col.
MOV P1,#11111011B ;ground row 2
MOV A,P2 ;read all columns
ANL A,#00001111B ;mask unused bits
CJNE A,#00001111B,ROW_2 ;key row 2, find col.
MOV P1,#11110111B ;ground row 3
MOV A,P2 ;read all columns
ANL A,#00001111B ;mask unused bits
CJNE A,#00001111B,ROW_3 ;key row 3, find col.
LJMP K2 ;if none, false input,

;repeat
....

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

KEYBOARD
INTERFACING

Grounding
Rows and
Reading
Columns

(cont’)

....
ROW_0: MOV DPTR,#KCODE0 ;set DPTR=start of row 0

SJMP FIND ;find col. Key belongs to
ROW_1: MOV DPTR,#KCODE1 ;set DPTR=start of row

SJMP FIND ;find col. Key belongs to
ROW_2: MOV DPTR,#KCODE2 ;set DPTR=start of row 2

SJMP FIND ;find col. Key belongs to
ROW_3: MOV DPTR,#KCODE3 ;set DPTR=start of row 3
FIND: RRC A ;see if any CY bit low

JNC MATCH ;if zero, get ASCII code
INC DPTR ;point to next col. addr
SJMP FIND ;keep searching

MATCH: CLR A ;set A=0 (match is found)
MOVC A,@A+DPTR ;get ASCII from table
MOV P0,A ;display pressed key
LJMP K1

;ASCII LOOK-UP TABLE FOR EACH ROW
ORG 300H

KCODE0: DB ‘0’,’1’,’2’,’3’ ;ROW 0
KCODE1: DB ‘4’,’5’,’6’,’7’ ;ROW 1
KCODE2: DB ‘8’,’9’,’A’,’B’ ;ROW 2
KCODE3: DB ‘C’,’D’,’E’,’F’ ;ROW 3

END

Home Automation, Networking, and Entertainment Lab

Dept. of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN

Chung-Ping Young
楊中平

8031/51 INTERFACING
WITH THE 8255

The 8051 Microcontroller and Embedded
Systems: Using Assembly and C
Mazidi, Mazidi and McKinlay

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 2HANEL

PROGRAMMING
THE 8255

8255 Features

8255 Chip

2120

2219

2318

2417

2516

2615

2714

2813

2912

3011

3110

329

338

347

356

365

378
2
5
5
A

4

383

392

401

PB2
PB1
PB0
PC3
PC2
PC1
PC0
PC4
PC5
PC6
PC7
A0
A1

GND
CS
RD

PA0
PA1
PA2
PA3

PB3
PB4
PB5
PB6
PB7
VCC
D7
D6
D5
D4
D3
D2
D2
D0
RESET
WR
PA7
PA6
PA5
PA4

8255 is a 40-
pin DIP chip

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 3HANEL

PROGRAMMING
THE 8255

8255 Features
(cont’)

8255 Block Diagram

8
2
5
5

D7 – D0

RD

WR

A0

A1

CS RESET

PA

PB

PC

It has three separately accessible 8-
bit ports, A, B, and C

They can be programmed to
input or output and can be
changed dynamically
They have handshaking
capability

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 4HANEL

PROGRAMMING
THE 8255

8255 Features
(cont’)

PA0 - PA7 (8-bit port A)
Can be programmed as all input or output,
or all bits as bidirectional input/output

PB0 - PB7 (8-bit port B)
Can be programmed as all input or output,
but cannot be used as a bidirectional port

PC0 – PC7 (8-bit port C)
Can be all input or output
Can also be split into two parts:

CU (upper bits PC4 - PC7)
CL (lower bits PC0 – PC3)

each can be used for input or output
Any of bits PC0 to PC7 can be
programmed individually

8
2
5
5
A

PA3
PA2
PA1
PA0
-RD
-CS

GND
A1
A0

PC7
PC6
PC5
PC4
PC0
PC1
PC2
PC3
PB0
PB1
PB2

PA4
PA5
PA6
PA7
-WR
RESET
D0
D1
D2
D3
D4
D5
D6
D7
Vcc
PB7
PB6
PB5
PB4
PB3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 5HANEL

PROGRAMMING
THE 8255

8255 Features
(cont’)

RD and WR
These two active-low control signals are
inputs to the 8255
The RD and WR signals from the 8031/51
are connected to these inputs

D0 – D7
are connected to the data pins of the
microcontroller
allowing it to send data back and forth
between the controller and the 8255 chip

RESET
An active-high signal input
Used to clear the control register

When RESET is activated, all ports are initialized
as input ports

8
2
5
5
A

PA3
PA2
PA1
PA0
-RD
-CS

GND
A1
A0

PC7
PC6
PC5
PC4
PC0
PC1
PC2
PC3
PB0
PB1
PB2

PA4
PA5
PA6
PA7
-WR
RESET
D0
D1
D2
D3
D4
D5
D6
D7
Vcc
PB7
PB6
PB5
PB4
PB3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 6HANEL

PROGRAMMING
THE 8255

8255 Features
(cont’)

A0, A1, and CS (chip select)
CS is active-low
While CS selects the entire chip, it is A0
and A1 that select specific ports
These 3 pins are used to access port A, B,
C, or the control register

8
2
5
5
A

PA3
PA2
PA1
PA0
-RD
-CS
GND
A1
A0

PC7
PC6
PC5
PC4
PC0
PC1
PC2
PC3
PB0
PB1
PB2

PA4
PA5
PA6
PA7
-WR
RESET
D0
D1
D2
D3
D4
D5
D6
D7
Vcc
PB7
PB6
PB5
PB4
PB3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

8255 is not selectedXX1
Control register110
Port C010
Port B100
Port A000
SelectionA0A1CS

8255 Port Selection

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 7HANEL

PROGRAMMING
THE 8255

Mode Selection
of 8255

While ports A, B and C are used to
input or output data, the control
register must be programmed to
select operation mode of three ports
The ports of the 8255 can be
programmed in any of the following
modes:

1. Mode 0, simple I/O
Any of the ports A, B, CL, and CU can be
programmed as input out output
All bits are out or all are in
There is no signal-bit control as in P0-P3 of
8051

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 8HANEL

PROGRAMMING
THE 8255

Mode Selection
of 8255
(cont’)

2. Mode 1
Port A and B can be used as input or output
ports with handshaking capabilities
Handshaking signals are provided by the bits
of port C

3. Mode 2
Port A can be used as a bidirectional I/O port
with handshaking capabilities provided by port
C
Port B can be used either in mode 0 or mode
1

4. BSR (bit set/reset) mode
Only the individual bits of port C can be
programmed

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 9HANEL

PROGRAMMING
THE 8255

Mode Selection
of 8255
(cont’)

D0D1D2D3D4D5D6D7

1 = I/O MODE
0 = BSR Mode

Mode Selection
00 = MODE 0
01 = MODE 1
1x = Mode 2

Port A
1 = Input
0 = Output

Port C
(Upper
Pc7 – PC4)
1 = Input
0 = Output

Mode Selection
0 = MODE 0
1 = MODE 1

Port B
1 = Input
0 = Output

Port C
(Lower
PC3 – PC0)
1 = Input
0 = Output

8255 Control Word Format (I/O Mode)

Group A Group B

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 10HANEL

PROGRAMMING
THE 8255

Simple I/O
Programming

The more commonly used term is I/O
Mode 0

Intel calls it the basic input/output mode
In this mode, any ports of A, B, or C can be
programmed as input or output

A given port cannot be both input and output at
the same time

Example 15-1
Find the control word of the 8255 for the following configurations:
(a) All the ports of A, B and C are output ports (mode 0)
(b) PA = in, PB = out, PCL = out, and PCH = out

Solution:
From Figure 15-3 we have:
(a) 1000 0000 = 80H (b)1001 0000 = 90H

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 11HANEL

PROGRAMMING
THE 8255

Connecting
8031/51 to

8255

The 8255 chip is programmed in any
of the 4 modes

mentioned earlier by sending a byte (Intel
calls it a control word) to the control
register of 8255

We must first find the port address
assigned to each of ports A, B ,C and
the control register

called mapping the I/O port

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 12HANEL

PROGRAMMING
THE 8255

Connecting
8031/51 to

8255
(cont’)

8051 Connection to the 8255

74LS373

AD7

AD0

8255

D7

D0

A0

A1D Q

G

OC

A14

WR

RD
P3.7
P3.6

P2.7

P2.0

ALE

P0.7

P0.0

CS

A1
A0

D7 D0 RES

PC

PB

PA

WR RD

Notice the use of RD and WR signals
This method of connecting an I/O
chip to a CPU is called memory
mapped I/O, since it is mapped into
memory space
use memory space to access I/O
use instructions such as MOVX to
access 8255

8255 is connected to
an 8031/51 as if it is a
RAM memory

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 13HANEL

PROGRAMMING
THE 8255

Connecting
8031/51 to

8255
(cont’)

Example 15-2

For Figure 15-4.
(a) Find the I/O port addresses assigned to ports A, B, C, and the
control register.
(b) Program the 8255 for ports A, B, and C to be output ports.
(c) Write a program to send 55H and AAH to all ports continuously.

Solution

(a) The base address for the 8255 is as follows:

(b) The control byte (word) for all ports as output is 80H as seen in
Example 15-1.

11xxxxxxxxxxXx1x

01XXxxxxxxxxXX1X

10XxxxxxxxxxXX1X

00xxxxxxxxxXxX1X

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

= 4003H CR

= 4002H PC

= 4001H PB

= 4000H PA

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 14HANEL

PROGRAMMING
THE 8255

Connecting
8031/51 to

8255
(cont’)

Example 15-2 (cont’)

(c)
MOV A,#80H ;control word

;(ports output)
MOV DPTR,#4003H ;load control reg

;port address
MOVX @DPTR,A ;issue control word
MOV A,#55H ;A = 55H

AGAIN: MOV DPTR,#4000H ;PA address
MOVX @DPTR,A ;toggle PA bits
INC DPTR ;PB address
MOVX @DPTR,A ;toggle PB bits
INC DPTR ;PC address
MOVX @DPTR,A ;toggle PC bits
CPL A ;toggle bit in reg A
ACALL DELAY ;wait
SJMP AGAIN ;continue

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 15HANEL

PROGRAMMING
THE 8255

Connecting
8031/51 to

8255
(cont’)

8051 Connection to the 8255

74LS373

AD7

AD0

D7

D0

A0

A1D Q

G

OC

WR

RD

A12
A13
A14
A15

P3.7
P3.6

P2.7

P2.0

ALE

P0.7

P0.0

8255

CS

A1
A0

D7 D0 RES

PC

PB

PA

WR RD

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 16HANEL

PROGRAMMING
THE 8255

Connecting
8031/51 to

8255
(cont’)

Example 15-3

For Figure 15-5.
(a) Find the I/O port addresses assigned to ports A, B, C, and the
control register.
(b) Find the control byte for PA = in, PB = out, PC = out.
(c) Write a program to get data from PA and send it to both B and C.

Solution:

(a) Assuming all the unused bits are 0s, the base port address for
8255 is 1000H. Therefore we have:

1000H PA

1001H PB

1002H PC

1003H Control register

(b) The control word is 10010000, or 90H.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 17HANEL

PROGRAMMING
THE 8255

Connecting
8031/51 to

8255
(cont’)

Example 15-3 (cont’)

(c)
MOV A,#90H ;(PA=IN, PB=OUT, PC=OUT)
MOV DPTR,#1003H ;load control register

;port address
MOVX @DPTR,A ;issue control word
MOV DPTR,#1000H ;PA address
MOVX A,@DPTR ;get data from PA
INC DPTR ;PB address
MOVX @DPTR, A ;send the data to PB
INC DPTR ;PC address
MOVX @DPTR, A ;send it also to PC

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 18HANEL

PROGRAMMING
THE 8255

Connecting
8031/51 to

8255
(cont’)

For the program in Example 15-3
it is recommended that you use the EQU
directive for port address as shown next

APORT EQU 1000H
BPORT EQU 1001H
CPORT EQU 1002H
CNTPORT EQU 1003H

MOV A,#90H ;(PA=IN, PB=OUT, PC=OUT)
MOV DPTR,#CNTPORT ;load cntr reg port addr
MOVX @DPTR,A ;issue control word
MOV DPTR,#APORT ;PA address
MOVX A,@DPTR ;get data from PA
INC DPTR ;PB address
MOVX @DPTR,A ;send the data to PB
INC DPTR ;PC address
MOVX @DPTR,A ;send it also to PC

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 19HANEL

PROGRAMMING
THE 8255

Connecting
8031/51 to

8255
(cont’)

or, see the following, also using EQU:
CONTRBYT EQU 90H ;(PA=IN, PB=OUT, PC=OUT)
BAS8255P EQU 1000H ;base address for 8255

MOV A,#CONTRBYT
MOV DPTR,#BAS8255P+3 ;load c port addr
MOVX @DPTR,A ;issue control word
MOV DPTR,#BAS8255P+3 ;PA address
. . .

Example 15-2 and 15-3
use the DPTR register since the base
address assigned to 8255 was 16-bit
if it was 8-bit, we can use
“MOVX A,@R0” and “MOVX @R0,A”

Example 15-4
use a logic gate to do address decoding

Example 15-5
use a 74LS138 for multiple 8255s

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 20HANEL

Examples 15-4 and 15-5
decode the A0 - A7 address bit

Examples 15-3 and 15-2
decode a portion of upper address A8 -
A15
this partial address decoding leads to what
is called address aliases
could have changed all x’s to various
combinations of 1s and 0s

to come up with different address
they would all refer to the same physical port

Make sure that all address aliases are
documented, so that the users know
what address are available if they want
to expanded the system

PROGRAMMING
THE 8255

Address Aliases

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 21HANEL

Figure 15-6. 8051 Connection to the 8255 for Example 15-4

PROGRAMMING
THE 8255

Address Aliases
(cont’)

74LS373

AD7

AD0

8255

D7

D0

A0
A1

D Q

G

OC

WR

RD

A2
A3

A4

A7
A6

A5

P3.7
P3.6

ALE

P0.7

P0.0

CS

A1
A0

D7 D0 RES

PCL

PB

PA

WR RD

PCU

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 22HANEL

PROGRAMMING
THE 8255

Address Aliases
(cont’)

Example 15-4

For Figure 15-6.
(a) Find the I/O port addresses assigned to ports A, B, C, and the
control register.
(b) Find the control byte for PA = out, PB = out, PC0 – PC3 = in, and
PC4 – PC7 =out
(c) Write a program to get data from PB and send it to PA. In addition,
data from PCL is sent out to PCU.

Solution:

(a) The port addresses are as follows:
CS A1 A0 Address Port

0010 00 0 0 20H Port A

0010 00 0 1 21H Port B

0010 00 1 0 22H Port C

0010 00 1 1 23H Control Reg

(a) The control word is 10000011, or 83H.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 23HANEL

Example 15-4 (cont’)

(c)
CONTRBT EQU 83H ;PA=OUT, PB=IN, PCL=IN, PCU=OUT
APORT EQU 20H
BPORT EQU 21H
CPORT EQU 22H
CNTPORT EQU 23H

...
MOV A,#CONTRBYT ;PA=OUT,PB=IN,PCL=IN,PCU=OUT
MOV R0,#CNTPORT ;LOAD CONTROL REG ADDRESS
MOVX @R0,A ;ISSUE CONTROL WORD
MOV R0,#BPORT ;LOAD PB ADDRESS
MOVX A,@R0 ;READ PB
DEC R0 ;POINT TO PA(20H)
MOVX @R0,A ;SEND IT TO PA
MOV R0,#CPORT ;LOAD PC ADDRESS
MOVX A,@R0 ;READ PCL
ANL A,#0FH ;MASK UPPER NIBBLE
SWAP A ;SWAP LOW AND HIGH NIBBLE
MOVX @R0,A ;SEND TO PCU

PROGRAMMING
THE 8255

Address Aliases
(cont’)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 24HANEL

PROGRAMMING
THE 8255

Address Aliases
(cont’)

Example 15-5

Find the base address for the 8255 in Figure 15-7.

Solution:

G1 G2B G2A C B A Address
A7 A6 A5 A4 A3 A2 A1 A0

1 0 0 0 1 0 0 0 88H

Figure 15-7. 8255 Decoding Using 74LS138

74LS138
A2 A0
A3 A1
A4

A5
A6

A7

A
B
C

Y2
G2A
G2B

G1

8255

CS

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 25HANEL

In 8031-based system
external program ROM is an absolute must
the use of 8255 is most welcome
this is due to the fact that 3031 to
external program ROM, we lose the two
ports P0 and P2, leaving only P1

Therefore, connecting an 8255 is the
best way to gain some extra ports.

Shown in Figure 15-8

PROGRAMMING
THE 8255

8031 System
With 8255

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 26HANEL

Figure 15-8. 8031 Connection to External Program ROM and the 8255

PROGRAMMING
THE 8255

8031 System
With 8255 (cont’)

74LS373

AD7

AD0

8255

D7

D0

A0

A12

D Q

G

OC

WR

RD

A8

A7

Vcc

2864
(2764)

8Kx8
program

ROM

A12

P3.7
P3.6

P2.7

P2.0

ALE

P0.7

P0.0

PSEN

EA

CS

A1
A0

RES

PC

PB

PA

WR RD
A12

A8

A7

A0

D7 D0

VppCE OE

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 27HANEL

8255
INTERFACING

Stepper Motor
Connection To

The 8255

Ch 13 detailed the interface of a
stepper motor to the 8051
Here show stepper motor connection
to the 8255 and programming in Fig
15-9

MOV A,#80H ;control word for PA=out
MOV R1,#CRPORT ;control reg port
address
MOVX @R1,A ;configure PA=out
MOV R1,#APORT ;load PA address
MOV A,#66H ;A=66H,stepper motor
sequence

AGAIN MOVX @R1,A ;issue motor sequence to
PA

RR A ;rotate sequence for
clockwise

ACALL DELAY ;wait
SJMP AGAIN

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 28HANEL

8255
INTERFACING

Stepper Motor
Connection To
The 8255 (cont’)

Figure 15-9. 8255 Connection to Stepper Motor

Decoding
CircuitryA7

A2

A1
A0

D7

D0

WR
RD

From
8051

ULN2003 Connection for Stepper Motor
Pin 8 = GND
Pin 9 = +5V

8255 ULN2003 Stepper Motor

1

2

3

4

16

15

14

13

COM

COM

+5V

Use a separate power supply for the motor

CS

A1
A0

D7

D0

RESET

PA2

PA1

PA0

WR
RD

PA3

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 29HANEL

8255
INTERFACING

LCD
Connection To

The 8255

Program 15-1
Shows how to issue commands and data
to an LCD. See Figure 15-10
must put a long delay before issue any
information to the LCD

Program 15-2
A repeat of Program 15-1 with the
checking of the busy flag
Notice that no DELAY is used in the main
program

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 30HANEL

8255
INTERFACING

LCD
Connection To
The 8255 (cont’)

Figure 15-10. LCD Connection

8255
+5V

10K
POT

LCD

RESET

RS E

D7

D0

PB0

PA7

PA0

R/w

PB1

PB2

VPP

VEE

VSS

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 31HANEL

8255
INTERFACING

LCD
Connection To
The 8255 (cont’)

;Writing commands and data to LCD without checking busy flag
;Assume PA of 8255 connected to D0-D7 of LCD and
;PB0=RS, PB1=R/W, PB2=E for LCD’s control pins connection

MOV A,#80H ;all 8255 ports as output
MOV R0,#CNTPORT ;load control reg address
MOVX @R0,A ;issue control word
MOV A,#38H ;LCD:2lines, 5X7 matrix
ACALL CMDWRT ;write command to LCD
ACALL DELAY ;wait before next issue(2 ms)
MOV A,#0EH ;LCD command for cursor on
ACALL CMDWRT ;write command to LCD
ACALL DELAY ;wait before next issue
MOV A,#01H ;clear LCD
ACALL CMDWRT ;write command to LCD
ACALL DELAY ;wait before next issue
MOV A,#06H ;shift cursor right command
ACALL CMDWRT ;write command to LCD
ACALL DELAY ;wait before next issue
. . . . ;etc. for all LCD commands
MOV A,#’N’ ;display data (letter N)
ACALL DATAWRT ;send data to LCD display
ACALL DELAY ;wait before next issue
MOV A,#’O’ ;display data (letter O)
ACALL DATAWRT ;send data to LCD display
ACALL DELAY ;wait before next issue
. . . . ;etc. for other data

Program 15-1.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 32HANEL

8255
INTERFACING

LCD
Connection To
The 8255 (cont’)

;Command write subroutine, writes instruction commands to LCD
CMDWRT: MOV R0,#APORT ;load port A address

MOVX @R0,A ;issue info to LCD data pins
MOV R0,#BPORT ;load port B address
MOV A,#00000100B ;RS=0,R/W=0,E=1 for H-TO-L
MOVX @R0,A ;activate LCD pins RS,R/W,E
NOP ;make E pin pulse wide enough
NOP
MOV A,#00000000B ;RS=0,R/W=0,E=0 for H-To-L
MOVX @R0,A ;latch in data pin info
RET

;Data write subroutine, write data to be display
DATAWRY:MOV R0,#APORT ;load port A address

MOVX @R0,A ;issue info to LCD data pins
MOV R0,#BPORT ;load port B address
MOV A,#00000101B ;RS=1,R/W=0,E=1 for H-TO-L
MOVX @R0,A ;activate LCD pins RS,R/W,E
NOP ;make E pin pulse wide enough
NOP
MOV A,#00000001B ;RS=1,R/W=0,E=0 for H-To-L
MOVX @R0,A ;latch in LCD’s data pin info
RET

Program 15-1. (cont’)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 33HANEL

8255
INTERFACING

LCD
Connection To
The 8255 (cont’)

;Writing commands to the LCD without checking busy flag
;PA of 8255 connected to D0-D7 of LCD and
;PB0=RS, PB1=R/W, PB2=E for 8255 to LCD’s control pins connection

MOV A,#80H ;all 8255 ports as output
MOV R0,#CNTPORT ;load control reg address
MOVX @R0,A ;issue control word
MOV A,#38H ;LCD:2 LINES, 5X7 matrix
ACALL NCMDWRT ;write command to LCD
MOV A,#0EH ;LCD command for cursor on
ACALL NCMDWRT ;write command to LCD
MOV A,#01H ;clear LCD
ACALL NCMDWRT ;write command to LCD
MOV A,#06H ;shift cursor right command
ACALL NCMDWRT ;write command to LCD
. . . . ;etc. for all LCD commands
MOV A,#’N’ ;display data (letter N)
ACALL NDATAWRT ;send data to LCD display
MOV A,#’O’ ;display data (letter O)
CALL NDATAWRT ;send data to LCD display
. . . . ;etc. for other data

Program 15-2.

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 34HANEL

8255
INTERFACING

LCD
Connection To
The 8255 (cont’)

;New command write subroutine with checking busy flag
NCMDWRT:MOV R2,A ;save a value

MOV A,#90H ;PA=IN to read LCD status
MOV R0,#CNTPORT ;load control reg address
MOVX @R0,A ;configure PA=IN, PB=OUT
MOV A,#00000110B ;RS=0,R/W=1,E=1 read command
MOV R0,#BPORT ;load port B address
MOVX @R0,A ;RS=0,R/W=1 for RD and RS pins
MOV R0,#APORT ;load port A address

READY: MOVX A,@R0 ;read command reg
PLC A ;move D7(busy flag) into carry
JC READY ;wait until LCD is ready
MOV A,#80H ;make PA and PB output again
MOV R0,#CNTPORT ;load control port address
MOVX @R0,A ;issue control word to 8255
MOV A,R2 ;get back value to LCD
MOV R0,#APORT ;load port A address
MOVX @R0,A ;issue info to LCD’s data pins
MOV R0,#BPORT ;load port B address
MOV A,#00000100B ;RS=0,R/W=0,E=1 for H-To-L
MOVX @R0,A ;activate RS,R/W,E pins of LCD
NOP ;make E pin pulse wide enough
NOP
MOV A,#00000000B ;RS=0,R/W=0,E=0 for H-To-L
MOVX @R0,A ;latch in LCD’s data pin info
RET

Program 15-2. (cont’)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 35HANEL

8255
INTERFACING

LCD
Connection To
The 8255 (cont’)

;New data write subroutine with checking busy flag
NDATAWRT:MOV R2,#A ;save a value

MOV A,#90H ;PA=IN to read LCD status,PB=out
MOV R0,#CNTPORT ;load control port address
MOVX @R0,A ;configure PA=IN, PB=OUT
MOV A,#00000110B ;RS=0,R/W=1,E=1 read command
MOV R0,#BPORT ;load port B address
MOVX @R0,A ;RS=0,R/W=1 for RD and RS pins
MOV R0,#APORT ;load port A address

READY: MOVX A,@R0 ;read command reg
PLC A ;move D7(busy flag) into carry
JC READY ;wait until LCD is ready
MOV A,#80H ;make PA and PB output again
MOV R0,#CNTPORT ;load control port address
MOVX @R0,A ;issue control word to 8255
MOV A,R2 ;get back value to LCD
MOV R0,#APORT ;load port A address
MOVX @R0,A ;issue info to LCD’s data pins
MOV R0,#BPORT ;load port B address
MOV A,#00000101B ;RS=1,R/W=0,E=1 for H-To-L
MOVX @R0,A ;activate RS,R/W,E pins of LCD
NOP ;make E pin pulse wide enough
NOP
MOV A,#00000001B ;RS=1,R/W=0,E=0 for H-To-L
MOVX @R0,A ;latch in LCD’s data pin info
RET

Program 15-2. (cont’)

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 36HANEL

8255
INTERFACING

ADC
Connection To

The 8255

the following is a program for the ADC
connected to 8255 as show in fig 15-
11

MOV A,#80H ;ctrl word for PA=OUT
PC=IN

MOV R1,#CRPORT ;ctrl reg port address
MOVX @R1,A ;configure PA=OUT

PC=IN
BACK: MOV R1,#CRORT ;load port C address

MOVX A,@R1 ;read PC to see if ADC is
ready

ANL A,#00000001B ;mask all except PC0
;end of conversation, now get ADC data
MOV R1,#APORT ;load PA address
MOVX A,@R1 ;A=analog data input

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 37HANEL

8255
INTERFACING

ADC
Connection To
The 8255 (cont’)

Figure 15-11. 8255 Connection to ADC804

10k 150 pF

8255

ADC804

RESET

Decoding
CircuitryA7

A2

WR

RD

From
8051

10k
POT

CS

A0

D7

D0

PA7

PA0

WR
RD

PC0

A1

CS

D7

D0

WR
RD

INTR GND

Verf/2

A GND

Vin(+)
Vin(-)

CLK IN
CLK R

VCC

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 38HANEL

OTHER MODES
OF THE 8255

BSR
(Bit Set/Reset)

Mode

A unique feature of port C
The bits can be controlled individually

BSR mode allows one to set to high or
low any of the PC0 to PC7, see figure
15-12.

D7 D6 D5 D4 D3 D2 D1 D0

S/RBit Selectxxx0

BSR
Mode

Figure 15-12. BSR Control Word

Not Used
Generally Set = 0

000 = Bit 0 100 = Bit 4
001 = Bit 1 101 = Bit 5
010 = Bit 2 110 = Bit 6
011 = Bit 3 111 = Bit 7

Set=1
Reset=0

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 39HANEL

Configuration for Examples 15-6, 15-7

OTHER MODES
OF THE 8255

BSR
(Bit Set/Reset)

Mode (cont’)

Example 15-6

Program PC4 of the 8255 to generate a pulse of 50 ms with 50% duty
cycle.

Solution:
To program the 8255 in BSR mode, bit D7 of the control word must be
low. For PC4 to be high, we need a control word of “0xxx1001”.
Likewise, for low we would need “0xxx1000” as the control word. The
x’s are for “don’t care” and generally are set to zero.

MOV a,#00001001B ;control byte for PC4=1
MOV R1,#CNTPORT ;load control reg port
MOVX @R1,A ;make PC4=1
ACALL DELAY ;time delay for high pulse
MOV A,00001000B ;control byte for PC4=0
MOVX @R1,A ;make PC4=0
ACALL DELAY

Decoding
CircuitryA7

A2

8255

A1
A0

WR
RD

CS

A0

D7

D0

PA4
WR
RD

A1

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 40HANEL

OTHER MODES
OF THE 8255

BSR
(Bit Set/Reset)

Mode (cont’)

Example 15-7

Program the 8255 in Figure 15-13 for the following.
(a) Set PC2 to high.
(b) Use PC6 to generate a square

Solution:
(a)

MOV R0,#CNTPORT
MOV A,#0XXX0101 ;control byte
MOVX @R0,A

(b)
AGAIN MOV A,#00001101B ;PC6=1

NOV R0,#CNTPROT ;load control port add
MOVX @R0,A ;make PC6=1
ACALL DELAY
ACALL DELAY
MOV A,#00001100B ;PC6=0
ACALL DELAY ;time delay for low pulse
SJMP AGAIN

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 41HANEL

OTHER MODES
OF THE 8255

8255 in Mode 1:
I/O With

Handshaking
Capability

One of the most powerful features of 8255 is
to handle handshaking signals
Handshaking refers to the process of two
intelligent devices communicating back and
forth

Example--printer

Mode 1: outputting data with handshaking
signals

As show in Figure 15-14
A and B can be used to send data to device with
handshaking signals
Handshaking signals are provided by port C
Figure 15-15 provides a timing diagram

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 42HANEL

OTHER MODES
OF THE 8255

8255 in Mode 1:
I/O With

Handshaking
Capability (cont’)

8255 Mode 1 Output Diagram

PC 4,5

Port A Output

Port B Output

OBFA

ACKA

INTRA

OBFB
ACKB

INTRB

Po
rt

B
 w

ith
H

an
ds

ha
ke

 S
ig

na
ls

Po
rt

A
 w

ith
H

an
ds

ha
ke

 S
ig

na
ls

Control Word – Mode 1 Output

x011/00101

D0D1D2D3D4D5D6D7

Port B
 O

utput

Port B
 M

ode 1

Port B
 O

utput

Port A
 O

utput

Port A
 M

ode 1

Port A
 M

ode 1

I/O
 M

ode

PC
 4,5 1=Input,0=O

utput

Status Word – Mode 1 Output

D0D1D2D3D4D5D6D7

IN
TR

B

IN
TR

A

IN
TEB

IN
TEA

O
B

FB

O
B

FA

I/OI/O

INTEA is controlled by PC6 in BSR mode.

INTEB is controlled by PC2 in BSR mode.

PA7
PA0
PC7
PC6

PC3

PC1
PC2

PC0
PB7
PB0

INTEA

INTEB

WR

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 43HANEL

OTHER MODES
OF THE 8255

8255 in Mode 1:
I/O With

Handshaking
Capability (cont’)

WR

OBF

INTR

ACK

Output

Figure 15-15. Timing Diagram for Mode 1 Output

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 44HANEL

OTHER MODES
OF THE 8255

8255 in Mode 1:
I/O With

Handshaking
Capability (cont’)

The following paragraphs provide the
explanation of and reasoning behind
handshaking signals only for port A,
but in concept they re exactly the
same as for port B

OBFa (output buffer full for port A)
an active-low signal going out of PC7
indicate CPU has written a byte of data in port
A
OBFa must be connected to STROBE of the
receiving equipment (such as printer) to inform
it that it can now read a byte of data from the
Port A latch

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 45HANEL

OTHER MODES
OF THE 8255

8255 in Mode 1:
I/O With

Handshaking
Capability (cont’)

ACKa (acknowledge for port A)
active-low input signal received at PC6 of 8255
Through ACK, 8255 knows that the data at port
A has been picked up by the receiving device
When the receiving device picks up the data at
port A, it must inform the 8255 through ACK
8255 in turn makes OBFa high, to indicate that
the data at the port is now old data
OBFa will not go low until the CPU writes a new
byte pf data to port A

INTRa (interrupt request for port A)
Active-high signal coming out of PC3
The ACK signal is a signal of limited duration

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 46HANEL

OTHER MODES
OF THE 8255

8255 in Mode 1:
I/O With

Handshaking
Capability (cont’)

When it goes active it makes OBFa inactive,
stays low for a small amount of time and then
goes back to high
it is a rising edge of ACK that activates INTRa
by making it high
This high signal on INTRa can be used to get
the attention of the CPU
The CPU is informed through INTRa that the
printer has received the last byte and is ready
to receive another one
INTRa interrupts the CPU in whatever it is
doing and forces it to write the next byte to
port A to be printed
It is important to note that INTRa is set to 1
only if INTEa, OBF, and ACKa are all high
It is reset to zero when the CPU writes a byte
to port A

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 47HANEL

OTHER MODES
OF THE 8255

8255 in Mode 1:
I/O With

Handshaking
Capability (cont’)

INTEa (interrupt enable for port A)
The 8255 can disable INTRa to prevent it if
from interrupting the CPU
It is internal flip-plop designed to mask INTRa
It can be set or reset through port C in BSR
mode since the INTEa flip-flop is controlled
through PC6
INTEb is controlled by PC2 in BSR mode

Status word
8255 enables monitoring of the status of
signals INTR, OBF, and INTE for both ports A
and B
This is done by reading port C into accumulator
and testing the bits
This feature allows the implementation of
polling instead of a hardware interrupt

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 48HANEL

OTHER MODES
OF THE 8255

Printer Signal

To understand handshaking with the
8255, we give an overview of printer
operation, handshaking signals
The following enumerates the steps of
communicating with a printer

1. A byte of data is presented to the data
bus of the printer
2. The printer is informed of the presence
of a byte of data to be printed by activating
its Strobe input signal
3. whenever the printer receives the data it
informs the sender by activating an output
signal called ACK (acknowledge)
4. signal ACK initiates the process of
providing another byte of data to printer

Table 15-2 provides a list of signals for
Centronics printers

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 49HANEL

OTHER MODES
OF THE 8255

Printer Signal
(cont’)

Ground18 - 25

Select input17

Initialize printer16

Error15

Auto feed14

Select13

Out of paper12

Busy11

ACK (acknowledge)10

Data bit 79

Data bit 68

Data bit 57

Data bit 46

Data bit 35

Data bit 24

Data bit 13

Data bit 02

Srtobe1

DescriptionPin

Table 15-2. DB-25 Printer Pins

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 50HANEL

OTHER MODES
OF THE 8255

Printer Signal
(cont’)

As we can see from the steps above,
merely presenting a byte of data to the
printer is not enough

The printer must be informed of the
presence of the data
At the time the data is sent, the printer
might be busy or out of paper

So the printer must inform the sender whenever
it finally pick up the data from its data bus

Fig 15-16 and 15-17 show DB-25 and
Centronics sides of the printer cable
Connection of the 8031/51 with the
printer and programming are left to the
reader to explore

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 51HANEL

OTHER MODES
OF THE 8255

Printer Signal
(cont’)

1 13

14 25

18 1

36 19

Figure 15-16. DB-25 Connector

Figure 15-17. 36-Pin Centronics Connector

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 52HANEL

OTHER MODES
OF THE 8255

Printer Signal
(cont’)

Indicates that the printer is in the state selected.OUTSLCT--13

A “high” signal indicates that printer is out of paperOUTPE3012

A “high” signal indicates that the printer cannot
receive data. The signal becomes “high” in the
following case: (1)during data entry, (2) during
printing operation,(3)in “off-line” status, (4)during
printer error status.

OUTBUSY2911

Approximately 0.5 μs pulse; “low” indicates data
has been received and printer is ready for data.

OUTACKNLG2810

“ “INDATA 8279

“ “INDATA 7268

“ “INDATA 6257

“ “INDATA 5246

“ “INDATA 4235

“ “INDATA 3224

“ “INDATA 2213

These signals represent information of the 1st to
8th bits of parallel data, respectively. Each signal is
at “high” level when data is logical “1”, and “low”
when logical “0”

INDATA 1202

STROBE pulse to read data in. Pulse width must be
more than 0.5 μs at receiving terminal. The signal
level is normally “high”; read-in of data is
performed at the “low” level of this signal.

INSTROBE191

DescriptionDirectionSignalReturnSerial

Table 15-3. Centronics Printer Specification

Department of Computer Science and Information Engineering
National Cheng Kung University, TAIWAN 53HANEL

OTHER MODES
OF THE 8255

Printer Signal
(cont’)

Data entry to the printer is possible only when the
level of this signal is “low” .(Internal fixing can be
carried out with DIP SW 1-8. The condition at the
time of shipment is set “low” for this signal.)

INSLCTIN--36

Pulled up to +5V dc through 4.7 K ohms resistance.----35

Not used--NC--34

Same as with pin numbers 19 t0 30--GND--33

The level of this signal becomes “low” when
printer is in “paper end”, “off-line”, and error state

OUTERROR--32

When this signal becomes “low” the printer con-
troller is reset to its initial state and the print buffer
is cleared. Normally at “high” level; its pulse width
must be more than 50μs at receiving terminal

ININIT--31

“Twisted-pair return” signal; GND level--GND--19–30

Not used--NC--18

Printer chassis GND. In the printer, chassis GND
and the logical GND are isolated from each other.

--CHASISGND--17

Logic GND level--0V--16

Not used--NC--15

When the signal is at ”low” level, the paper is fed
automatically one line after printing. (The signal
level can be fixed to “low” with DIP SW pin 2-3
provided on the control circuit board.)

INAUTOFEEDXT--14

DescriptionDirecti
on

SignalReturnSerial

Table 15-3. Centronics Printer Specification (cont’)

	The 8051 Microcontroller and Embbeded Systems.jpg
	The 8051 Microcontroller and Embedded Systems.pdf
	Binder.pdf
	Introduction to Computing.pdf
	8051 Microcontrollers.pdf
	Assembly Language Programming.pdf
	Branch Instructions.pdf
	IO Port Programming.pdf
	I/O PORTPROGRAMMING
	I/O PROGRAMMING
	I/O PROGRAMMINGI/O Port Pins
	I/O PROGRAMMINGPort 0
	I/O PROGRAMMINGPort 0(cont’)
	I/O PROGRAMMINGPort 0 as Input
	I/O PROGRAMMINGDual Role of Port 0
	I/O PROGRAMMINGPort 1
	I/O PROGRAMMINGPort 1 as Input
	I/O PROGRAMMINGPort 2
	I/O PROGRAMMINGPort 2 as Input or Dual Role
	I/O PROGRAMMINGPort 3
	I/O PROGRAMMINGPort 3(cont’)
	I/O PROGRAMMINGPort 3(cont’)
	I/O PROGRAMMINGDifferent ways of Accessing Entire 8 Bits
	I/O BIT MANIPULATION PROGRAMMING I/O Ports and Bit Addressability
	I/O BIT MANIPULATION PROGRAMMING I/O Ports and Bit Addressability(cont’)
	I/O BIT MANIPULATION PROGRAMMING I/O Ports and Bit Addressability(cont’)
	I/O BIT MANIPULATION PROGRAMMING Checking an Input Bit
	I/O BIT MANIPULATION PROGRAMMING Checking an Input Bit(cont’)
	I/O BIT MANIPULATION PROGRAMMING Checking an Input Bit(cont’)
	I/O BIT MANIPULATION PROGRAMMING Checking an Input Bit(cont’)
	I/O BIT MANIPULATION PROGRAMMING Reading Single Bit into Carry Flag
	I/O BIT MANIPULATION PROGRAMMING Reading Single Bit into Carry Flag(cont’)
	I/O BIT MANIPULATION PROGRAMMING Reading Input Pins vs. Port Latch
	READING INPUT PINS VS. PORT LATCHReading Latch for Output Port
	READING INPUT PINS VS. PORT LATCHReading Latch for Output Port(cont’)
	I/O BIT MANIPULATION PROGRAMMING Read-modify-write Feature

	Addressing Modes.pdf
	Arithmetic Logic Instructions.pdf
	ARITHMETIC & LOGIC INSTRUCTIONS AND PROGRAMS
	ARITHMETIC INSTRUCTIONS��Addition of Unsigned Numbers
	ARITHMETIC INSTRUCTIONS��Addition of Individual Bytes
	ARITHMETIC INSTRUCTIONS��ADDC and Addition of 16-Bit Numbers
	ARITHMETIC INSTRUCTIONS��BCD Number System
	ARITHMETIC INSTRUCTIONS��Unpacked and Packed BCD
	ARITHMETIC INSTRUCTIONS��DA Instruction
	ARITHMETIC INSTRUCTIONS��DA Instruction�(cont’)
	ARITHMETIC INSTRUCTIONS��DA Instruction�(cont’)
	ARITHMETIC INSTRUCTIONS��Subtraction of Unsigned Numbers
	ARITHMETIC INSTRUCTIONS��Subtraction of Unsigned Numbers�(cont’)
	ARITHMETIC INSTRUCTIONS��Subtraction of Unsigned Numbers�(cont’)
	ARITHMETIC INSTRUCTIONS��Unsigned Multiplication ��
	ARITHMETIC INSTRUCTIONS��Unsigned Division��
	ARITHMETIC INSTRUCTIONS��Application for DIV
	SIGNED ARITHMETIC INSTRUCTIONS��Signed 8-bit �Operands
	SIGNED ARITHMETIC INSTRUCTIONS��Signed 8-bit �Operands �(cont’)
	SIGNED ARITHMETIC INSTRUCTIONS��Overflow Problem
	SIGNED ARITHMETIC INSTRUCTIONS��OV Flag
	SIGNED ARITHMETIC INSTRUCTIONS��OV Flag�(cont’)
	SIGNED ARITHMETIC INSTRUCTIONS��OV Flag�(cont’)
	SIGNED ARITHMETIC INSTRUCTIONS��2's Complement
	LOGIC AND COMPARE INSTRUCTIONS��AND
	LOGIC AND COMPARE INSTRUCTIONS��OR
	LOGIC AND COMPARE INSTRUCTIONS��XOR
	LOGIC AND COMPARE INSTRUCTIONS��XOR�(cont’)
	LOGIC AND COMPARE INSTRUCTIONS��Complement Accumulator
	LOGIC AND COMPARE INSTRUCTIONS��Compare Instruction
	LOGIC AND COMPARE INSTRUCTIONS��Compare Instruction�(cont’)
	LOGIC AND COMPARE INSTRUCTIONS��Compare Instruction�(cont’)�
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Rotating Right and Left
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Rotating Right and Left�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Rotating through Carry
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Rotating through Carry�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Serializing Data
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Serializing Data�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �Serializing Data�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION�� Single-bit Operations with CY
	ROTATE INSTRUCTION� AND DATA SERIALIZATION�� Single-bit Operations with CY�(cont’)
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �SWAP
	ROTATE INSTRUCTION� AND DATA SERIALIZATION� �SWAP�(cont’)
	BCD AND ASCII APPLICATION PROGRAMS
	BCD AND ASCII APPLICATION PROGRAMS� �Packed BCD to ACSII Conversion
	BCD AND ASCII APPLICATION PROGRAMS��ASCII to Packed BCD Conversion
	BCD AND ASCII APPLICATION PROGRAMS��ASCII to Packed BCD Conversion�(cont’)
	BCD AND ASCII APPLICATION PROGRAMS��Using a Look-up Table for ASCII
	BCD AND ASCII APPLICATION PROGRAMS��Checksum Byte in ROM
	BCD AND ASCII APPLICATION PROGRAMS��Checksum Byte in ROM�(cont’)
	BCD AND ASCII APPLICATION PROGRAMS��Checksum Byte in ROM�(cont’)
	BCD AND ASCII APPLICATION PROGRAMS�� Binary (Hex) to ASCII Conversion

	Programming in C.pdf
	Hardware Connection and Hex File.pdf
	Timer Programming.pdf
	Serial Port Programming.pdf
	Interrupts Programming.pdf
	Interfacing to External Memory.pdf
	Lecture_8051_12_-_Real_World_Interfacing_I.pdf
	LCD and Keyboard.pdf
	LCD AND KEYBOARD INTERFACING
	LCD INTERFACING ��LCD Operation
	LCD INTERFACING��LCD Pin Descriptions
	LCD INTERFACING��LCD Command Codes
	LCD INTERFACING��Sending Data/ Commands to LCDs w/ Time Delay
	LCD INTERFACING��Sending Data/ Commands to LCDs w/ Time Delay�(cont’)
	LCD INTERFACING ��Sending Codes and Data to LCDs w/ Busy Flag �(cont’)
	LCD INTERFACING ��Sending Codes and Data to LCDs w/ Busy Flag �(cont’)
	LCD INTERFACING ��LCD Data Sheet
	LCD INTERFACING��Sending Information to LCD Using MOVC Instruction
	LCD INTERFACING��Sending Information to LCD Using MOVC Instruction�(cont’)
	LCD INTERFACING��Sending Information to LCD Using MOVC Instruction�(cont’)
	LCD INTERFACING��Sending Information to LCD Using MOVC Instruction�(cont’)
	LCD INTERFACING��Sending Information to LCD Using MOVC Instruction�(cont’)
	KEYBOARD INTERFACING �
	KEYBOARD INTERFACING ��Scanning and Identifying the Key
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)
	KEYBOARD INTERFACING ��Grounding Rows and Reading Columns�(cont’)

	Interfacing with 8255.pdf

